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Abstract— In the majority of cases, magnetically levitated
rotors are equipped with externally mounted position sensors,
i.e. a dislocation between bearing and sensor plane occurs.
The disparity between actual and measured rotor position
can cause system instability due to natural oscillations of
the shaft. This paper proposes a method for avoiding this
problem by integrating capacitive position sensors straight
into the stator laminations of a radial magnetic bearing. The
stronger sensor noise originating from the proximity between
bearing coils and sensors can be reduced effectively by means
of a stochastical state estimator. Different types of KALMAN
filters used for these purposes, both linear and extended
ones, are presented in this paper. It is shown how unknown
bearing parameters can be estimated by means of the filter.
Concluding, a LQG controller (optimal controller combined
with optimal state estimator) is presented and compared to an
optimally parametrised PID controller. All methods proposed
in this paper are approved by measurements.

Index Terms— Magnetic Levitation, LQG Control, Kalman
Filtering, Capacitive Sensors.

I. I NTRODUCTION

The system inherent instability of magnetically levitated
shafts or self-bearing motors requires a fast and accurate
measurement of the actual rotor position. A variety of
sensing technologies has been developed and used for these
purposes [1]. These technologies usually have one attribute
in common – the external application of the sensors by
means of an additional measuring trace. However, it is
a well known fact that natural oscillation modes of the
rotor in combination with the spatial dislocation between
measuring plane and bearing laminations can cause sta-
bility problems [2]. In worst case, the natural modes are
even excited by the controller due to a nodal point located
between laminated core and measuring trace. This problem
can be solved by means of mechanical modifications,
additional sensors or sophisticated control.

Another approach, which is little applied up to now, is
to avoid dislocation by obtaining the position information
in-plane with the bearing laminations. For this reason, a
radial active magnetic bearing (Fr = 2400 N) was fitted
out with capacitive position sensors which are fully inte-
grated into the pole gap of the stator laminations (Fig. 1).

This work is supported by Deutsche Forschungsgemeinschaft (German
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The sensors consist of simple copper-cladded material. To
achieve better linearity, two opposite sensors are used for
each bearing axis, whereas the difference between both
capacitances is evaluated in a bridge circuit [3]. The bridge
is driven by a high-frequent, constant amplitude carrier
voltage. For demodulating the amplitude-modulated signal,
an in-phase rectifier with an narrow-band bandpass is used.
More detailed information referring to the measurement
system can be found in [4].
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Fig. 1. Section of radial magnetic bearing with integrated capacitive
position sensor.

Practical investigations have been made by dint of an
unilaterally magnetically levitated test rotor (mass 25 kg,
length 910 mm). Integrated capacitive sensors are installed
on the test rig as well as conventionally eddy current
sensors (with an externally mounted measuring trace made
of aluminium). The test rotor exhibits difficult dynamic
behaviour with regard to the lower oscillation modes. In
particular, the third natural oscillation mode possesses an
nodal point which is located quite close to the rotor lamina-
tions of the bearing, as can be seen in Fig. 2. It is obvious
that this oscillation mode (i = 3) is not controllable, if
the eddy current sensors are used. Because of the positive
position feedback, the system will start oscillating with the
corresponding natural frequency (Fig. 2, upper diagram).
If the controller gains are chosen too high, instability is
unavoidable. By using the integrated capacitive sensors
instead, the dynamic behaviour of the system can be
improved significantly, because of the absent excitation ofa
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Fig. 2. Influence of position sensor arrangement on dynamic behaviour
of magnetically levitated rotor (Top – sketch of test rotor with natural
oscillation modesi = 1 . . . 3, Middle – step response with external
eddy current sensors, Bottom – step response with integrated capacitive
sensors).

low-order natural oscillation. The lower diagram in Fig. 2
proves this proposition. This heightened system stability
enables the user to increase the proportional and derivative
gains of the position controller which yields better stiffness
and damping of the bearing. On the test rig, enlarging the
controller gains about more than 75 % has been possible.
– Another advantage of the capacitive measuring system,
which is quite simple to manufacture, is the possibility to
reduce axial installation length of the radial bearing about
20 to 30 % because of the absent necessity for incorporating
an additional measuring trace.

II. M EASUREMENTPREPROCESSING WITHL INEAR

KALMAN FILTER

The advantage of gaining position information of the
magnetically levitated rotor in-plane with the bearing lam-
inations entails the disadvantage of stronger sensor noise
(caused by the proximity of the sensors to the bearing
windings) and thus reduced positioning control accuracy.
One possible solution is to implement a stochastical state
estimator or KALMAN filter to reduce the effective sensor
noise. The filter contains a model of the considered system.
Just like an observer, it predicts system states and outputs
on the basis of this internal model. The estimated outputs
are compared with the real measured, noisy output signals.
System noise (caused by modelling inaccuracies) and mea-
surement noise are taken into account explicitly [6]. The
system has to be modelled in state space form

xk+1 = Akxk + Bkuk + ξk

yk = Ckxk + ηk

}

(1)

with ξk process noise andηk measurement noise, both
sequences of zero-mean Gaussian white noise. The time-
discrete filter algorithm can be outlined as [7]

Prediction step:

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1

P k|k−1 = Ak−1P k−1|k−1A
T
k−1 + Qk−1

Correction step:

Kk = P k|k−1C
T
k

(

CkP k|k−1C
T
k + Rk

)−1

x̂k|k = x̂k|k−1 + Kk

(

yk − Ckx̂k|k−1

)

P k|k = (I − KkCk) P k|k−1
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(2)

with x̂ optimal estimation of state vector,u deterministic
control input vector,y measurement vector,{A B C}
discrete time system model matrices,P covariance matrix
of estimation error,Q covariance matrix of system (i.e.)
process noise,R covariance matrix of measurement noise
andK an optimal gain matrix for correcting the predicted
system states with the new measurement data. The notation
(µ|ν) denotes an estimation at time stepµ with measure-
ment information from time stepν.

For computation time reasons, it is recommendable to
reduce the length of the state vector and therewith the
dimensions of most matrices in (2) as far as possible.
Hence a decentralised filter structure is preferable (i.e. each
bearing axis is observed by means of one independent
KALMAN filter). To use the linear filter algorithm, a linear
system model is required. The forcefm acting on the test
rotor is described by

fm = m
dv

dt
= m

d2x

dt2
= kx · x + ki · i (3)

with kx force-position-factor,ki force-current-factor,m
equivalent rotor mass. Radial rotor velocityv is connected
to rotor positionx via v = dx

dt
. The dynamic behaviour of

the pulse amplifier and the electrical part of the bearing is
subsumed to one first-order lag element

Ta

di

dt
+ i = Kairef (4)

with Ta equivalent time constant of electrical plant,Ka

amplifier gain andi control current. This elementary ap-
proach provides a system model with three state variables
xT = (x v i) and one control inputu = iref . The
experimental test rig under investigation allows measure-
ment of position and control current, thus the measurement
vector isyT = (Kmx x Kmi i). A linear filter using this
approach has been implemented on a TMS320C240 DSP
(sampling time 50µs). The improvement, which has been
achieved by using the optimally estimated rotor position
signal instead of the measured signal as control variable
for the position control loop, is depicted in Fig. 3. The
rotor oscillation amplitude around the reference position
could be reduced about approx. 80 % in standstill, which
enabled us to heighten the PID controller gains about 75 %.
– Estimating unknown system parametersp(t) by means of



the linear KALMAN filter is possible, if the dependency of
these parameters is a linear one. Then the state vector can
be augmented byp, and the modelling can be made by
dp
dt

= 0 + ξp if no deterministic law for the change ofp
can be found. Thus, any changes of the unknown parameter
are modelled only by means of the process noiseξ. More
detailed information concerning the system modelling and
the choice of the filter noise variance matrices has been
given in [4] and must be omitted here.
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Fig. 3. Improvement of position control accuracy by means of KALMAN

filter at standstill (Top – measured position as control variable, Bottom –
estimated position as control variable).

III. STATE AND PARAMETER ESTIMATION WITH

EXTENDED KALMAN FILTER

One of the most important benefits of the KALMAN filter
is its ability for estimating unknown system parameters,
even if a change of these parameters cannot be described
in any deterministic way. For this purpose, the state vector
x has to be augmented by the parameters which are of
interest. Presumably, most of these parameters are coupled
with other state variables in a multiplicative or another
non-linear way, and therewith a linear state space model
in the manner of (1) is not assignable any longer. The
same problem appears if the system itself is described
by non-linear equations (as it is generally the case with
any magnetic bearing before carrying out a linearisation).
In such cases, the linear KALMAN filter algorithm (2) is
not applicable, and the extended KALMAN filter has to be
utilised [6][7]. The system is described by two non-linear
vector-valued functions

xk+1 = fk (xk,uk) + ξk yk = gk (xk) + ηk. (5)

Any changes of unknown parameters are modelled byξk.
The filter algorithm can be outlined as

Prediction step:

x̂k|k−1 = fk−1

(

x̂k−1|k−1,uk−1

)

P k|k−1 = Φk−1P k−1|k−1Φ
T
k−1 + Qk−1

Correction step:

Kk = P k|k−1Γ
T
k

(

ΓkP k|k−1Γ
T
k + Rk

)−1

x̂k|k = x̂k|k−1 + Kk

(

yk − gk

(

x̂k|k−1

))

P k|k = (I − KkΓk) P k|k−1
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(6)

with the JACOBI matrices

Φk−1 =
∂fk−1(x̂k−1|k−1,uk−1)

∂xk−1

Γk =
∂gk(x̂k|k−1)

∂xk







(7)

which realise a linearisation of the system round the actual
estimated state trajectory at each time step. Basically, there
exist two approaches for employing the extended KALMAN

filter in combination with magnetic bearing applications:

• Linearising the system model and augmenting the
state vector by non-linear coupled parameters or

• applying a non-linear system model right from the
start.

Both variants have been investigated and shall be delineated
subsequently.

A. Linearised Bearing Model

If the simple linearised model from section II for one
bearing axis is used and the state vector is augmented
by the parameters force-current-factorki(t) and force-
position-factorkx(t)

xT (t) = [x(t) v(t) i(t) ki(t) kx(t)] , (8)

the resulting non-linear vector-valued functions in equa-
tions (5) can be written as (in continuous time)

f (x,u) =


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(9)

The estimation of the statesx(t), v(t) andi(t) at the actual
time step is based on the parameterski(t−T ) andkx(t−
T ) which have been estimated at the previous time step
(T sampling time). The algorithm has been implemented
on a TMS320C240 DSP (dSPACER© environment) with a
sampling time of 50µs. Experiments on the test rig have
shown that both noise reduction and parameter estimation
work well, although it came out that a proper estimation of
ki andkx does require an adequate system excitement. This
has been realised by means of an additional PRBS (Pseudo
Random Binary Sequence) signal which was superimposed
to the reference position signal [4]. This necessity for
exerting influence on the system seems to be the main
drawback of this modelling method.

B. Non-Linear Bearing Model

A quite different approach is describing the bearing by
means of a non-linear model. This is an obvious procedure
since the bearing is a non-linear system by nature, and any
previously implemented linearisation (as in the both cases
described in the previously sections) will implicate errors



when estimating states and parameters. The essential quan-
tity in the system is the magnetic forcefm acting on the
levitated rotor. The test bearing is a eight pole, heteropolar
radial bearing. Each magnet consists of two adjacent poles
which carry both a winding for premagnetising current
iprem and one winding for control currenti (differential
principle). The magnetic force generated by each magnet
can be expressed by [8]

fm (x, i) = cf

[

(i0 + i)
2

(δ0 − x cos α)
2 −

(i0 − i)
2

(δ0 + x cos α)
2

]

(10)
with cf a bearing constant containing design specific
parameters (pole area, number of turns. . . ),i0 the related
premagnetising current (iprem times the ratio of premag-
netising and control winding turns),i control current,x
rotor displacement with reference to the centre position,δ0

the nominal air gap andα the pole angle between centre of
pole area and centre of magnet (all relevant parameters can
be found in the appendix). The state variable velocityv is
determined by NEWTONs second law

dv

dt
=

1

m
(fm + fz) (11)

with an additional disturbance forcefz which is a param-
eter to be estimated. Further state variables are position
x and control currenti (cf. section II). The delay which
is caused by the measurement system has been taken into
account by augmenting the state vector with an additional,
delayed rotor positionxd. The dynamic behaviour of the
measurement system has been modelled as a first order lag
element with the time constantTmx:

Tmx

dxd

dt
+ xd = x. (12)

The basic idea behind this is to compare the real measured
value with a delayed value of the estimated position and
therewith to compensate the delay caused by the measuring
system. For control purposes, of course the undelayed
estimation of position is to be used. At last, the new state
vector consists of five elements

xT (t) = [x(t) v(t) i(t) xd(t) fz(t)] . (13)

The non-linear continuous-time state and measurement
equations can now be formulated as

f (x,u) =
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(14)
Again, the unknown disturbance forcefz is modelled only
by means of process noise. To implement the algorithm

(6) on a signal processor, the discrete JACOBI matrixes
Φ and Γ are required. These can be calculated by com-
puting the continuous-time matricesF = ∂f(x,u)

∂x
and

G = ∂g(x)
∂x

. Subsequently, the matrixΦ has to be cal-
culated by discretisingF by means of a series expansion
of the matrix exponential functionΦ = eF T (T sampling
time). This expansion has been cancelled after the third
term so that

Φ(T ) = I + FT +
1

2
F 2T 2 (15)

(I identity matrix).Γ is identical toG if the input vector
is piecewise constant. The prediction of the state vector
(first equation in (6)) is executed by using a fourth-order
RUNGE-KUTTA integration method. After implementing
the filter on a dSPACER© environment, the noise variance
matrices have been set to

R = diag
{

7.1 · 10−4 V2 1.4 · 10−1 V2
}

(16)

Q = diag

{

0 m2 2.6 · 10−10 m2

s2

4.3 · 10−1 A2 0 m2 1 N2
}

. (17)

By using the estimated rotor positionx as control vari-
able, the measurement noise caused oscillations have been
reduced about approx. 80 %. The second main goal when
implementing this non-linear filter has been estimation of
unknown system parameters. Fig. 4 illustrates the operation
of estimating a unknown step-shaped disturbance force
acting on the rotor (the dynamic behaviour of the filter has
been varied by tuning the elementq55 of Q). This ability
of estimating highly dynamic disturbances can be used for
implementing a disturbance feedforward.
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As already mentioned, the extended KALMAN filter
algorithm is based on linearising the system modelaround
the actual operating point by calculation of Φk. This
allows to state a linear system description in any arbitrarily
chosen system state. The linearising factors (which are
ki and kx if the elementary model of section II is used)
must be detectable inΦk. It can bee shown that the two
parameters can be calculated out of particular elements of
Φk via

kx,k =
2m

T 2
(Φ11,k − 1) and ki,k =

2m

T 2
Φ13,k. (18)



Fig. 5 shows the dynamic estimation of force-position-
and force-current-factor in dependency of the actual rotor
position (static loadfz = 200 N applied). Detecting such
fast time-variant changes of system parameters is quite
useful if an adaptive controller shall be utilised. It should
be emphasised that no additional system excitement is
necessary in this case, contrary to the filter with a linear
system model which has been described in section III-A.
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Fig. 5. Estimation of time varying system parameters (Top – actual
rotor position, Middle – estimation of force-position-factor kx, Bottom –
estimation of force-current-factorki).

IV. L QG CONTROL OFACTIVE MAGNETIC BEARING

In addition to noise reduction and estimation of unknown
parameters, integrating a KALMAN filter yields another
essential advantage. The availability of all system statesof-
fers the possibility to implement a full-order state feedback
controller for the magnetic bearing. Combining an optimal
state estimator with an optimal state space controller leads
to a regulator which is known as LQG controller (L inear
system model,Quadratic optimising criterion,Gaussian
disturbances) [5]. The regulator is able to transfer the
system statesx from any arbitrarily chosen initial condition
x0 to the aspired final conditionxk = 0. The structure of
the controlled system can be seen in Fig. 6. Due to the
fact that external disturbance forces would cause steady
positioning errors, and since step-shaped changes of the
reference position are to be followed, the LQG structure
has been superimposed by an integral controller which is
able to correct potentially occurring control deviations.

The optimal state feedback vectorK can be calculated
by examining the optimality criterion

J (x0,u) =
∞
∑

k=0

(

xT
k QJxk + uT

k RJuk

)

. (19)

The optimising problemminK J (x0,u) leads to a matrix-
valued RICCATI equation

P J = QJ + AT P JA−

−AT P JB
(

RJ + BT P JB
)−1

BT P JA (20)

whose solutionP J allows computing the controller gains
according to

K =
(

RJ + BT P JB
)−1

BT P JA. (21)
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Fig. 6. LQG controlled system (ξ process andη measurement noise).

The matricesQJ and RJ in (19) are weighting any
deviation of the state variables or the control variables,
respectively. The strategy for choosing the elements of
these matrices has already been described in [4]. A de-
centralized controller for the three integral state variables
xT = (x v i) has been implemented on a TMS320C240
DSP (dSPACER© environment). The controller output signal
u = iref acts as reference input for the subordinate (analog
regulated) current control loop. The optimal controller
gains have been found to

K =
(

9.979 · 103 29.686 0.073
)

. (22)

The gain for the superimposed integrative controller has
been chosen toKI = 1.03 · 106 s−1. If we assume the
nominal bearing parameters (which can be found in the
appendix) to be true, we receive an pole allocation of
the LQG controlled system as can be seen in Fig. 7. For
comparison, the poles of an appropriate state estimator are
depicted (in this case a simple fourth order linear KALMAN

filter after reaching the steady state). The dominant pole
pair of the state estimator shows real parts which are more
than five times the real parts of the dominant poles of
the controlled system. This offers an adequate transient
response of the observer structure.

Experimental investigations have been executed on the
test rig for permitting an objective comparison between a
conventional PID controller and the LQG regulator. Fig. 8
shows the step response of the rotor position and the appen-
dant control current. The optimal PID controller parameters
have been computed by means of root locus method
(K = 0.65, TI = 50 ms, TD = 3 ms). Though the PID
controlled rotor reacts faster on a change of the reference
value, its transient time is very much bigger than the
transient time of the LQG controlled system. Furthermore,
the state space controlled rotor shows no overshoot at
all. Another (and by far more important) advancement is
the significantly reduced amplitude of the control current,
which allows to save a large amount of control energy when
performing such dynamic processes.
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The graphs in Fig. 9 illustrate the control behaviour
of the magnetically levitated rotor in case of a step-
shaped acting disturbance force (∆fz = 400 N). If we
define the dynamic stiffness of the bearingsdyn = ∆fz

∆x

with ∆x the maximal rotor deviation from reference
value, we get a stiffness of the LQG controlled system
sdyn,LQG = 6.7 N/µm which is almost two times the
stiffness of the PID controlled systemsdyn,PID = 3.6 N/µm.
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Fig. 9. Dynamic stiffness of optimal PID and LQG regulator (step-shaped
disturbance force∆fz = 400 N).

V. CONCLUSION

The structural problems caused by spatial dislocation
between radial magnetic bearings and position sensors can
be overcome by integrating capacitive sensors into the

stator laminations of the bearing. It has been shown in this
paper that the stronger sensor noise can be reduced signifi-
cantly by implementing linear or extended KALMAN filters.
Next to noise reduction, these filters are able to estimate
unknown system parameters (e.g. disturbance forces, force-
current- and force-position-factors). In terms of estimation
dynamics and necessary system excitement, the extended
filter with non-linear system model has shaped up as the
best alternative. – When implementing a stochastical state
estimator, the availability of all system states suggests to
use an full-order optimal state space controller. Such an
LQG controller has been implemented on the test rig. It has
been shown that this regulator is superior to conventional
optimally parametrised PID controllers in terms of control
behaviour and saving of control energy.

APPENDIX

TEST RIG PARAMETERS

Parameter Value

Mass of test rotor 25 kg
Length of test rotor 910 mm
Rotor laminations diameter 272 mm
Rated bearing force (one axis)Fr 2400 N
Rated air gapδ 0.3 . . . 0.7 mm
Position measurement gainKmx 20mV/µm

Current measurement gainKmi 0.2V/A
Rated force-current-factorki 128.6N/A
Rated force-position-factorkx 800310N/m
Equivalent rotor massm 21.5 kg
Pulse amplifier gainKa 5A/V
Pulse amplifier equivalent time constantTa 400µs
Sampling time of DSPT (all algorithms) 50µs
Force factorcf 2.1935e-6N · m2/A2

Pole angleα π/8
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