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Abstract— The work presented in this paper exposes a new
approach for the control of the dynamic behavior of flexible
rotors for rotating machines supported by AMB. In order
to perform this control, an accurate model of the structure
reduced on the modes to be controlled and an accurate model
of the AMB are used. An approach involving the use of a
condensed reduced model is introduced. The identification
approach presents the main advantage to be easy to realize,
and efficient for control. An experimental identification of an
accurate inverse model of the AMB is performed, as it is
necessary for modal control. The results are exposed for a
flexible beam, and validates the method experimentally.

Index Terms— condensed reduced model, inverse model of
the AMB, modal control.

I. I NTRODUCTION

Turbomolecular pumps are high vacuum pumps used
in many industrial fields. Their rotating elements are
levitating on Active Magnetic Bearings (AMB) as a
solution for chemical (corrosion) and mechanical (sealing,
maintenance, sustainable development, . . . ) problems
inherent to the manufacturing process [1]. The behavior
of these AMB is highly non linear, they are unstable, and
thus require to be continuously controlled. Industrially,
AMB are mostly controlled by PID controllers that permit
the control of the rigid body modes of the rotor [2].
As they are not well designed to cross several critical
speeds of rotation, new methods have been developed
[3]. Their principles rely on very accurate mathematical
models of the coupling relations between the system
and the AMB linearized around a working point. Firstly,
the mathematical model is estimated, re-adjustments
are then necessary to insure the accuracy of the model.
Consequently, the efficiency of the control will depend on
the precision of the model. Secondly, the linear controllers
that are obtained do not take into account the nonlinear
characteristics of the AMB. Moreover, the displacements
amplitudes would be small around the working point.
The work presented in this paper exposes the control of a
flexible beam supported by AMB that would be applied
for the control of a flexible rotor of a rotating machine. In
order to perform this control, an accurate reduced model
of the structure on a Target Frequency Bandwidth (TFB)
and accurate models of the AMB (direct and inverse) are
needed. An approach involving the use of a Condensed

Reduced Model (CRM) is introduced. It consists on the
direct identification of a condensation of the structure
on the available sensors. The identification approach
presents the main advantage to be easy to realize, and
efficient for control [4]. For the actuator concerns, the
AMB is chosen to be controlled by intensity. However, the
electromagnetic force is a non linear function of the air
gap and the intensity. In order to apply the control forces,
the implementation of an inverse model is necessary. In
that case, the effort generated by the AMB will be the
force computed by the controller. Furthermore, analytical
models do not take into account all specifications inherent
to experimental conditions. That was the reason for
the development of an experimental identification of an
accurate inverse model of the AMB that will eventually
be introduced in the control loop.
The paper is organized as follow. In the first part, the
CRM aspects are presented. It involves the theoretical
aspects, the CRM-based observer and the complex modes
of the CRM. In second part, the experimental method for
the inverse model identification of the AMB is shown.
In the third part, the CRM and the inverse model of
the magnetic bearings are implemented in the feedback
modal controller, that is applied to the structure. For the
demonstration, flexible beam is used, because its behavior
is similar to the rotor’s at rest. Then, the method is assessed
experimentally. The paper ends on the concluding remarks.

II. CONDENSEDREDUCED MODEL (CRM)

A. Theoretical aspects

Equations of motion of an degrees of freedom system
can be expressed as:

Fn×1 = Mn×nẍn×1 + Cn×nẋn×1 + Kn×nxn×1 (1)

with Mn×n, Cn×n and Kn×n respectively the mass,
damping and stiffness matrices.ẍn×1, ẋn×1 andxn×1 are
the acceleration, velocity and displacement vectors.Fn×1

represents the external forces vector acting on the system.
The control of the modes of the system allows a global

action on the structure with a minimum number of actuators
[5], as long as the controllability criterium is respected.
The symetric matrices of mass, stiffness and damping are



diagonalized, so that the equation of motion of the system
can be decoupled. In this work, the use of a CRM of the
structure is proposed. This model represents the structure
condensed on the measured degrees of freedom (dof). The
CRM has as much poles as the number of measurable
dof. Although the method is similar to [6], the approach is
different.

Equation (1) can be expressed as:
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Sub-indices refer to the parts of the matrices that corre-
spond to the dof that can be measured (m) or not (nm). The
dimension ofxm and its time-derivations isr×1, while r is
the number of measurable dof.xnm and its time-derivations
are the dof that cannot be measured, and the dimension is
(n − r) × 1. The sub-indicef refers to the parts of the
matrices corresponding to the last(n − r) equations for
the dof that are not measurable.
In modal space, the displacement vector can be written as:
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}
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,

with 1 ≤ i ≤ r, and, r + 1 ≤ ni ≤ n

(3)

qi represents the modal quantities vector corresponding
to the modes, whose frequencies are within the Target
Frequency Bandwidth (TFB) in free motion, andqni rep-
resents the others.Φ is the classical modal matrix of
the system, and is subdivised in four parts:φi and φni

both correspond to the measured dof.φi refers to the
modes, whose frequencies are within the TFB, whileφni

correspond to the other modes. Similarly,φinm andφninm

both correspond to the unmeasured dof.φinm refers to the
modes, whose frequencies are within the TFB, whileφninm

corresponds to the other modes.
Equation (3) can also be written as:


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
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(4)

During the identification of the CRM, the structure is
put into motion by an impact type disturbance or initial
conditions. When using a low-pass numerical filter, whose
cutting-frequency equals the upper-limit of the TFB, the
absolute values of the amplitudes of theqni can be con-
sidered as much lower than those of theqi.
Consequently, (4) becomes:

{
|qni| ≪ |qni|
xnmi = φinmφ−1

i xmi
(5)

Equation (5) introduced in the firstr equations of (2)
gives the equation of the CRM:
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The equations of motion of the CRM represent the
dynamic of the structure referred to the dof that can be
measured and dynamically bounded to the modes that are
within the TFB.

B. Modal observer and complex modes

In operating conditions, the structure is excited on all
its modes. As the modal controller is tuned on the modes
of the TFB, a modal filter is necessary to avoid spillover.
Analogic filters are avoided, as it would induce time shifts
in the sensors signals for such low frequency range, and
thus, greatly lessen the controller efficiency. Therefore,
an observer based on the CRM is used as a low pass
filter with no time delays. Its parameters are chosen as
a compromise between the convergence rapidity and the
higher frequency signals filtered out. As the influence of
the higher frequency signals of the structure is unknown,
the observer parameters are tuned in simulation, using the
signals issued from the CRM. An important and uniform
numerical noise was added to the observer to take them
into account during tuning.
The CRM can be expressed in a state-space formulation
as:

{
ẋmi

ẍmi

}

= ACRM

{
xmi

xmi

}

+ BCRMFm (7)

With ACRM andBCRM respectively the evolution ma-
trix and the action matrix of the state-space formulation of
the CRM.

ACRM =
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]

and,
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]

(8)
As the error of the observer can be defined as:

ε =

{
xmi

ẋmi

}

−

{
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}

(9)

The dynamic of the observer depends on the choice of
the parameters ofL. Cobs is the observation matrix of the
CRM.

ε̇ = (ACRM − LCobs)ε (10)



The mass, stiffness and damping matrices of the CRM
are not symmetric. Therefore, it is necessary to use the
orthogonality of the left and right eigenvectors to decouple
the CRM equations [7].

The eigenvalue problem can be formulated by assuming
a solution for the state vector as:

x = exp(λt)vr (11)

whereλ is the eigenvalue, andvr is the rigth eigenvector.
The eigenvalue problem needs to be solved for both the
right and left eigenvectors, that can be expressed as follow:

ACRMvr = λvr

and
AT

CRMvl = λvl

(12)

where vl is the left eigenvector. The right and left
eigenvectors can be normalized as:

vT
lsvrt = 2δst, and,vT

lsACRMvrt = 2λtδst

s, t = 1, 2, . . . , 2r
(13)

The eigenvectors and eigenvalues can be written as:

vrs = as ± ibs, vls = cs ± ids; s = 1, 2, . . . , r
λs = σs ± iωs; s = 1, 2, . . . , r

(14)

The modal matrices can be expressed in real components
as:

R = [a1, b1, a2, b2, . . . , ar, br]
L = [c1, d1, c2, d2, . . . , cr, dr];

(15)

with the relationships,

RT L = I
and,
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(16)

with,
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Equation (7) is decoupled as:

q̇ = Λq + LT BCRMFm (18)

III. I NVERSE MODEL OF THEAMB

Active Magnetic Bearings equations are well known
throughout litterature. Ampere’s theorem is widely used to
express the electromagnetic force of the AMB as a function
of its material properties. However, those properties are
not always known with great precision. Usually, the AMB
parameters (input intensity, air gap distance to the bearing)
are set so that the rotor mass is in operating position.
Equivalent stiffness respect to the distance and the intensity

are then estimated [8]. Thus, the electromagnetic behavior
of the AMB is linearized around its operating position.
In our case, an inverse model of the AMB is necessary to
express the efforts issued from the modal controller to the
efforts applied to the structure. The relation between the
intensity, the air gap and the electromagnetic force is:

FAMB = I2(α/(a + β)2) (19)

with FAMB , I and a respectively the electromagnetic
force, the input intensity and the air gap.α andβ are the
AMB parameters issued from its material properties. The
electromagnetic forces are strongly nonlinear according to
the input current and the air gap. The function of the
inverse model of the AMB is to make this relation linear
for the controller. Experimentally, the AMBs are driven
by a current amplifier fed by a voltage issued from a
dSpace (MatlabR©) card. Several voltages are applied to
the current amplifier and the response of the system is
compared to the CRM’s. A specialized neural network is
used for each AMB to identify their material parameters
(Fig. 1). These parameters are then extracted from the
neural network weights. Then, they were used to construct
the inverse model of the AMBs. The inverse model of the
AMBs is then implemented in the control loop before the
current amplifier (Fig. 2). The current amplifier gain is
called gamplifier. The equation of the inverse model of
the AMB for the magneti is written as:

Vcontrol(i) = (ai + βi)/(gamplifier

√
αi)

√
FAMB(i) (20)

Fig. 1. Specialized neural network for parameters identication.

IV. EXPERIMENT AND RESULTS

A. Experimental bench

A clamped-free beam made of steel is used for the
demonstration of the feasibility of the method. An AMB
made with two rectangular 80 coils magnets is used. The
mobile part of the ferromagnetic core is fixed on the beam
in order to close the magnetic circuit. The first four modes
were chosen to be controlled. Therefore, four displacement



Fig. 2. Implementation of the inverse model of the AMB in the control
loop.

sensors were necessary for the identification of the CRM of
the beam. Only one actuator (the AMB) is used for control.
In a modal control strategy, it is necessary that the actuator
is collocated to one of the sensors. Thus, the displacement
of the spot corresponding to the actuator was obtained by
taking the average value of the sensors placed on either
sides of the AMB. The calibration setup is composed of a
standard PC connected to a PowerPC in which a dSpace
hardware card (ds1005) is implemented. The controller is
tuned on the SimulinkR© interface. The sampling period of
the analysis is set toTs = 10−4s. The controlling signals
are tensions that feed a current amplifier, which drives the
magnets. The experimental bench is shown on Fig. 3.

B. Results

The evolution matrix ACRM is identified after the
structure is excited with an impact hammer. The signals
issued from the displacement sensors are used for the
identification. As the structure responds on more than four
modes, a low-pass frequency analogic filter is used to verify
(5). The evolution matrix is identified according to (21).






{
xmi(k + 1)
ẋmi(k + 1)

}

= Ad−CRM

{
xmi(k)
ẋmi(k)

}

Ad−CRM = expm(ACRMTs)
(21)

Similarly, the action matrix is identified when the struc-
ture is excited by a harmonic excitation. The excitation
frequency is chosen within the TFB, and the identification
is done only when the structure motion is steady. Equation
(22) was used for the identification.






{
xmi(k + 1)
ẋmi(k + 1)

}

− Ad−CRM

{
xmi(k)
ẋmi(k)

}

= ∆(X(k))

∆(X(k)) = Bd−CRMFm(k)
Bd−CRM = A−1

CRM (Ad−CRM − I2r×2r)BCRM

(22)
The CRM was used for the tuning of the observer gains

in simulation. The observer poles are compared to those

(a) Scheme of the experimental bench.

(b) Photo of the experimental bench.

Fig. 3. Experimental bench.

of the CRM on Fig. 4a. They are a compromise between
the convergence rapidity and noise energy transferred. The
effect of the CRM-based-observer are also visible on Fig.
4 (b and c). It filters out the influence of the modes
that are not included in the TFB. Therefore, the modal
controller will be fed by only the quantities of the modes
corresponding to the CRM.

Similarly, the controller is tuned with the use of the CRM
in simulation. The modal forces are calculated as a linear
feedback on the modal quantities, which are converted in
real forces that will be applied on the structure (23). An
integral feedback was also applied to insure the position-
ing of spot corresponding on sensor2. The CRM-based
observer and the modal controller are then used for the
control of the structure. Responses between controlled and
uncontrolled structure submitted to an impact are shown
on Fig. 5.

{
Fmod = −Kmodq
Fcontrol = (BT

CRMBCRM )BT
CRML−T Fmod

(23)

V. CONCLUDING REMARKS

The work exposed in this paper describes a new ap-
proach for the modal control of structures with the use
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(b) Time reconstruction of the ob-
server (bold line) compared to the
structure response (thin line).
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Fig. 4. CRM-based observer and its influence.
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Fig. 5. Comparison between the controlled (bold line) and uncontrolled
structure (thin line) submitted to an impact excitation.

of highly non linear actuators. The use of a condensed
reduced model provides great advantages for modal control.
Its identification is easy, as no finite element model is
necessary to obtain a condensed reduced model precise
enough for control. The number of modes that can be
controlled equals the number of the available sensors.
To make the effort generated by the AMB the image of
the force computed by the controller, a inverse model is
necessary. A neural network is used for this task, as it
provides a great flexibility of procedure. In the last part
of the work, it is shown that the method offers great
efficiency for both the dynamic control and positioning
control. The approach is thus validated. In forthcoming
study, the method will be extended to a beam with free-
free boundary conditions (with very low stiffness strings
on both ends), and eventually will be applied to rotors in
working conditions (in magnetic levitation).
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