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Abstract–This paper proposes a new modeling and 
control method for flexible rotors using active magnetic 
bearings (AMB) toward passing through many critical 
speeds and realizing high-speed rotation. To achieve 
this, it is necessary to control vibration caused by some 
elastic modes under acting gyroscopic effect. A 
suggested model “Extended Reduced Order Physical 
Model” enables to express motion and vibration 
simultaneously. Then, we present a controller that 
combined PID and LQ controllers applied for the 
model.  

 
Index Terms – rotor dynamics, multi-body dynamics, 

modelling method, vibration control, gyroscopic effect 

I.  INTRODUCTION 

Active magnetic bearings (AMB) systems have been 
applied to various machines such as grinding machines, 
vacuum pumps and energy storage flywheel system. 
Because it enables to support rotor without friction and has 
applicability for machines that demands rotor used in high-
speed. However, according to rotate it in higher speed, we 
must consider to control more elastic modes of rotor and 
precession caused by gyroscopic effect. In this paper, a 
modeling technique for a flexible rotor-AMB system that 
can express vibration of elastic modes and gyroscopic 
effect is considered. And we propose a control method 
applied for the model.  
The model is designed in order to obtain an exact multi-

degree-of-freedom model of the flexible rotor-AMB 
system[1]. Utilizing the obtained model, we designed a 
state feedback control system which combines both PID 
and LQ controllers[2].PID controller is used for stabilizing 
the originally unstable rotor- AMB system corresponded 
with control of the rigid mode, whereas LQ control with 
state feedback loops is adapted to control many elastic 
modes of vibration. One of the authors had applied these 
modeling and control method to a flexible rotor[3]. We 
have been developing bigger and more flexible rotor 
system. In this paper, The method is applied to the new 
rotor. 

 

Ⅱ.CONTROL OBJECT AND ITS DYNAMIC CHARACTERISTICS 

 

Fig.1 shows a schematic diagram of the flexible rotor 
used as the control object in this research. Mass of this 
rotor is about 10 kg. This rotor is levitated thrust axis by a 
PID controller independently designed. And the coupling 
among thrust axis and other axes is negligible. Therefore, 
this research considers only dynamics of the flexible rotor 
in radial direction later.  

    
 

Fig.1 Schematic of flexible rotor-AMB system 
 

 Fig.2 shows the vibration mode shapes and their natural 
frequencies in free boundary condition obtained by FEM. 
In this study, we considered to control rigid modes,  1st 
elastic mode, and 2nd elastic mode. 

    
              1st mode        2nd mode       3rd mode 

163.7[Hz]              391.4[Hz]         691.6[Hz] 
Fig.2 Modal shapes obtained by FEM 

 



Ⅲ.EXTENDED REDUCED ORDER PHYSICAL MODELING 
METHOD 

A. Design procedure of extended reduced order physical 
model 

In order to simulate and control flexible structures, 
authors have already developed an effective modelling 
method called “Extended Reduced Order Physical 
Modeling Method (EROM)” which can be treated in multi-
body dynamics[4]. This modelling method is very useful 
for dynamic simulations and controller design of flexible 
structures because it is possible to treat three-dimensional 
non-linear systems and to express a lumped parameter 
system. 

In the model, flexible structure is composed of two 
kinds of rigid bodies and springs. One type of rigid body  
named as “reference rigid body” expresses motion, while 
the other type of rigid body named “rigid body element” 
express vibration. 

The procedure for constructing the extended reduced 
order physical modelling method is as follows,  

 
1. Analyze the mode shapes and calculate the modal 

masses. 
2. Choose the number of modes to be controlled and 

determine the positions of the rigid body elements. 
3. Identify the mass matrix of the rigid body elements. 
4. Identify the mass matrix of the reference rigid body. 
5. Identify the stiffness matrix of the rigid body 

elements. 
6. Construct the equations of motion. 
 

In this study, the chosen mode number is determined to 
4, two elastic modes to two directions(x, y axis direction). 
Then, number of the rigid body element is selected to 9. It 
is decided from designing conditions of modal masses of 
rigid body element written as below. 

 
1. Agreement of motion energy in vibration mode. 
2. Keep orthogonality to other vibration modes 
3. Conservation of momentum in vibration mode 
4. Conservation of angular momentum in vibration mode 
 
Representing these conditions by equation becomes written 
as below. 
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Φ : Modal matrix obtained from vibration mode shapes 
OB :M  Mass of rigid body elements, B :J Moment of inertia 

of rigid body elements, n: Number of reference mode 
The mass matrix of the reference rigid body OAM  and 

the moment of inertia A′J  are calculated to be equal to real 
mass realM  and real moment of inertia real′J  of the system 
in total. This is the reason the model can express motion 
and vibration simultaneously. 

T
OA real m OB m= −M M η M η                      (2) 

( )T T T
A real m m m Gm OB Gm m′ ′ ′= − +J J η J η η r M r η        (3) 

( )m m 3T
  = ×η I I  

Matrix mη  has many number of the 3 3×  unit matrix  
I  as design points, arranged lengthways. 
 
The stiffness matrix k  is obtained from the following 
equation. 

2 1T− −=k Φ ω µΦ             (4)  
where ω is a matrix including natural frequency of each 
modes 

Compared with modal masses of rigid body element that 
is a part of expressing vibration modes, mass of reference 
rigid body is designed as total mass of the model has same 
value from real mass of structure.  

Fig.3 shows a model of our rotor obtained by applying 
the EROM concept.  

 

 
 

Fig. 3 Extended Reduced Order Physical Model 
Next, I explain about relation between the model and 

real rotor using this figure. Rigid body  labeled as A is 
reference rigid body. Rigid bodies labeled as B1~B9 are 
rigid body elements. B2, B6 are points of the actuators in 
the radial direction. B1, B7 are the sensing point  in the 
radial displacement. And B5 is center of gravity of the 



rotor. B9 means end of the rotor. Each rigid body have 
respectively 6 degrees of freedom (6DOF). Each rigid 
body elements and reference rigid body are connected with 
springs each other.                   

Parameters of the rigid body elements and the reference 
rigid body are determined by the procedure mentioned 
above and presented in Table 1.       

 
Table 1 Parameters of rigid body elements and reference rigid body 

 
Moment of Inertia[kgm2] 

Element 
Distance from 

center 
[m] 

Mass 
[kg]  

X-axis 
 

Y-axis 
B1 0.3767 -0.05489 -0.1188 -0.1188 
B2 0.3349 0.9217 0.05467 0.05467 
B3 0.23721 0.5786 1.2003 1.2003 
B4 0.1116 0.8567 0.9110 0.9110 
B5 0 -0.1644 -0.3966 -0.3966 
B6 -0.02791 -0.4220 1.0466 1.0466 
B7 -0.05581 -0.1936 1.6247 1.6247 
B8 -0.09767 1.1033 -0.1911 -0.1911 
B9 -0.2233 0.07381 -0.3170 -0.3170 

A 0 8.3154 -3.6214 -3.6214 

 

B. Equations of motion 

In this section, we conduct equation of motion using the 
method of multi-body dynamics “the constraint addition 
method”[5]. Firstly, the equations of motion of the 
reference rigid body A without a restraint in 6 DOF are 
given like this. 

OA OA OA=M V F      (5) 

OA OA OA OA OA OA′ ′ ′ ′ ′ ′+ =J Ω Ω J Ω N    (6) 

OA :V  Velocity of reference rigid body,  

OA :F  External force of reference rigid body 

OA :′Ω  Angular speed of reference rigid body, 

OA :′N  Torque of reference rigid body 
Similarly, the equations of motion of the rigid body 

elements (B1~B9) without restraint (6 DOF) are given like 
this 

OB OB OB=M V F        (7) 

OB OB OB OB OB OB′ ′ ′ ′ ′ ′+ =J Ω Ω J Ω N    (8) 
Each symbols mean same in (5) and (6). Suffix “ B ” means 
the value of rigid body element B1~B9. 

Equations (5) ~ (8) are equations of motion of the rotor 
without restraint. The generalized velocity H without 
restraint is given by 

T
OA OA OB OB   ′ ′H = V Ω V Ω    (9) 

The mass matrix include the moment of inertia HM  and 
external force matrix HF  are given by 
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H TT T T T
OA OA OB OB= ′ ′  F F N F N   (11) 

Arranged equations (9) ~ (11) can be written by 
H H=M H F      (12) 

Secondly, when h  is represents the modal velocity, the 
equation of motion with restraints will be derived. The 
generalized velocity S  in the system with restraints is 
given by 

TT T T
OA OA= ′  S V Ω h                  (13) 

Using the constraint addition method[4], the equation of 
motion of the rigid body model is derived. The general 
equations of the constraint addition method are as follows. 

S S=M FS                           (14) 

S S= +SH H H   (15) 
S T H

S S=M H M H   (16) 

SSS T H H
S

dd
dt dt

  
=  − +      

HH SF H F M    (17) 

where, 
SM : Generalized mass matrix constraints 

SF : Generalized force vector constraint 
HM : Mass matrix unconstraint 

H : Generalized velocity unconstraint 
HF : Force vector unconstraint 

C. State space representation 

The equation of motion derived in the foregoing section 
is non-linear. In order to design the linear control system, it 
is necessary to linearize the equation of motion and to 
create a linearized state space form. If small terms δS  and 

SδF  of S  and SF  are deleted, (14) is written as follows.  
S S
0δ = δM S F               (18) 

where the matrix with subscript 0 means substitution of the 
equilibrium position. The relationship between generalized 
velocity S and generalized coordinate Q with a derivative 
with respect to time is 
 

=Q LS  (19) 
Equation (14) and (19) can be expressed in matrix form as 

( ) 1S Sd
dt

−           

=
S M F
Q LS

  (20) 



This equation is a first-order ordinary differential equation. 
From the above equation, the state-space form 

c c c c= +X A X B U  (21) 

c c c=Y C X  (22) 

can be obtained by linearization. When state valuable cX  
is 

T

c   = T TX S Q  (23) 

system matrix cA is the partial derivative of the right side 
of Eq.(20) with respect to state valuable cX  [6] 
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Also, the control matrix cB  is the partial derivative of the 
right hand side of Eq.(20) with respect to input U . 
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eqQ and eqS are the equilibrium positions of generalized 
coordinates and generalized velocitys, respectively. 
 

4. NUMERICAL ANALYSIS OF ROTOR DYNAMICS 

A. Frequency response 

Simulated frequency responses using the space state 
equation (21) are shown in Fig.4 and 5. The resonance 
peaks appeared near 35 Hz and 85 Hz are of two rigid 
modes (parallel mode and conical mode), and 160 Hz and 
390 Hz are 1st and 2nd  elastic modes. The gyroscopic 
effect is clearly appeared in Fig.5 though it did not appear 
in Fig.4. Fig.5 shows frequency response of the model 
rotational speed at 30 Hz. It is recognized that the 
gyroscopic effect act to divide into two natural frequencies 
in each modes. The identical natural vibrations are coupled 
in the X-Y direction, when the gyroscopic effect is acted. 
Therefore, the natural frequencies move to the higher 
frequency and the lower frequency separately. As 
mentioned above, this modeling method has expressed 
gyroscopic effect.  
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Fig.4 Frequency response of the model at rotational speed 0[Hz] 
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Fig.5 Frequency response of the model at rotational speed 30[Hz]   

B. Whirl chart 

In order to demonstrate the usefulness of extended 
reduced order physical model that can treat the gyroscopic 
effect of the flexible rotor, variation of natural frequencies 
depended on rotational speed is examined by calculation. 
Fig.6 shows the relationship between rotational speed and 
natural frequency of the rotor used in this study. Natural 
frequencies of two elastic modes located at 160 Hz and 
390 Hz under 0 rpm are separated into two frequencies as 
the rotational speed increases. 
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Fig.6 Natural frequency changed by gyroscopic effect 



5. CONTORL SYSTEM DESIGN 

A. PID Control 

Since the rotor-AMB system is essentially an unstable, 
PID control is used to stabilizes the system. The two rigid 
modes (parallel and conical) are also controlled. Fig.7 
shows the associated block diagram. 
 

 
Fig.7 Block diagram 

The transfer function of PID controller is designed as 
follows, 

1 d1 2 d2

PID d1 d2

T s 1 T s 1i 1
u Ls R T s 1 T s 1

  α + α +
=   + + +  

  (27) 

Therefore, it can be written in the state space 
representation as below, 

h h h h hu= +X A X B  (28) 

hh hY = C X  (29) 
Here, 
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The designed parameter and frequency response with PID 
controller are shown as follows. 

1 2

d1 d2

4 4
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= =
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Fig.8 Frequency response of PID controller 

B. Filtered LQ control system combined with PID 

Fig.9 shows a block diagram of the system combined PID 
controller with LQ controller. The feedback gain vectors, 

PIDK  is tuning and LQK  is obtained by applying LQ 
control law to the augmented system. 

 
Fig.9 Block diagram of augmented system 

 
Derived non-linear equation (14) is done in the linearized 
equation, and act out a state equation. The state equation 
and output equation combined with PID control system 
into this equation are shown as follows. 

X = AX + BU  (30) 
Y = CX  (31) 

Here, 
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{ }T
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( )4 4×U = - I C + K X  
Here, the state variable is defined as follows. 
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f lq =  K K K  
Thus, the state equation of the augment system is written 
as follows. 

c c c c cX = A X + B U  (32) 

c c cY = C X    (33) 
Here, 

H

H
c

s s

 
 
 

=
A 0

A
B C A

, T
c H  =B B 0 , 
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5. COMPUTER SIMULATION 

 
In this paper, simulation results show in frequency 

responses using only PID controller and controller 
combining PID with LQ, as shown in Fig.10,11 and 12. 
These frequency responses are calculated in case the rotor 
is at critical speeds obtained by Fig.6,and  oscillated at 



rigid body element B2 and observed at B1. It is clearly 
shown that the rigid modes are well suppressed when PID 
controller is only used, however, the elastic modes are not 
suppressed. This is because PID controller is used merely 
for controlling the rigid modes in this study. Contrarily, the 
controller combined PID with LQ is well acted to control 
the 1st elastic mode and also 2nd elastic mode. Especially, 
separated two natural frequencies appeared by gyroscopic 
effect as the rotational speed increases are well controlled. 
It is an effect of the used state feedback to bring 
robustness. 
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Fig.10 Simulation results of frequency response at 130(Hz)  
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Fig.11 Simulation results of frequency response at 210(Hz) 
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Fig.12 Simulation results of frequency response at 320(Hz) 

 6. CONCLUSIONS 

In this paper, a controller design procedure for a flexible 
rotor-AMB system has been investigated. The proposed 
modeling technique was usefully applied to obtain the 
multi- degree of freedom model of the flexible rotor-AMB 
system exactly. Extended reduced order physical model of 
a flexible rotor-AMB system can simultaneously express 
the motion and vibration. The controller designed using 
controller combined PID with LQ control were effectively 
introduced to stabilize the flexible rotor and to control 
flexible bending vibration.  

It is expected that the proposed modeling and 
controlling methods may invite a break through for high-
speed rotations of flexible rotors to pass through more than 
the second critical speed. In the near future, we will try to 
prove utility of the model by experiment. 
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