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.Abstract – A 5 degrees of freedom bearingless 
induction motor is a multi-variable, nonlinear and 
strong-coupled system. In order to achieve rotor 
suspension and operation steadily, it is necessary to 
realize dynamic decoupling control between torque 
force and suspension forces. In the paper, a method 
based on α-th order inverse system theory is used to 
study on dynamic decoupling control of bearingless 
induction motors. Firstly, the working principles of 3 
degrees of freedom magnetic bearing and 2 degrees of 
freedom bearingless induction motor are analysed, the 
radial-axial force equations of 3 degrees of freedom 
magnetic bearing and the electromagnetic torque 
equation and radial force equations of the 2 degrees of 
freedom bearingless induction motor are given, and 
then the state equations of the 5 degrees of freedom 
bearingless induction motor are set up. Secondly, 
feasibility of decoupling control based on dynamic 
inverse theory for bearingless induction motor is 
discussed in detail, and the dynamic feedback 
linearization method is used to decouple and linearize 
the system. Finally, linear control system techniques 
are applied to these linearization subsystems to 
synthesize and simulate. The simulation results have 
shown that this kind of control strategy can realize 
dynamic decoupling control between torque force and 
suspension forces of the 5 degrees of freedom 
bearingless induction motor, and the control system has 
good dynamic and static performance. 

 
Index Terms –Bearingless induction motor, Magnetic 

bearing, Inverse system, Feedback linearization, 
Decoupling control  

I.  INTRODUCTION 

In this paper, an innovative 5 degrees of freedom 
bearingless induction motor, which is composed of a 3 
degrees of freedom axial-radial magnetic bearing and a 2 
degrees of freedom bearingless induction motor. 5 degrees 
of freedom bearingless induction motor is a non-linear and 
strong-coupling system, because there are couplings 
between the torque subsystem and flux linkage subsystem, 
in addition, there are couplings between radial force 
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subsystems themselves. If the motor doesn’t be taken some 
right decoupling control methods, the rotor of motor 
couldn’t be suspended and the motor couldn’t work 
steadily. In order to realize the innovative 5 degrees of 
freedom bearingless induction motor operation steadily and 
reliably, it is necessary to control the radial suspension 
forces, axial electromagnetic force of the magnetic 
bearings and torque, radial suspension forces of the 2 
degrees of freedom bearingless induction motor 
independently. Therefore, α-th order inverse system 
method is used to study on decoupling control of the 
innovative bearingless induction motor in the paper [1]. 

II. DECOUPLING CONTROL OF BEARINGLESS INDUCTION 
MOTOR 

A.  The Radial and Axial Force Equations of 3 Degrees of 
Freedom Magnetic Bearing 

Fig. 1 shows the structure diagram of 3 degrees of 
freedom radial and axial magnetic bearing [2]-[4]. In Fig. 1 
(a), Φla, Φlb and Φlc are the magnet fluxes of the windings in 
A, B and C axis; Φlx and Φly are the equivalent magnet 
fluxes projected from Φla, Φlb and Φlc to the axis of xl and yl;  
ila, ilb and ilc are the currents of the windings in A, B and C 
axis; ila and ilb are the currents of equivalent windings in xl 
and yl axis. Then the Maxwell forces Flx and Fly, which 
generated by the composite fluxes of Φla, Φlb and Φlc, 
projected to the xl and  yl axis in the Fig. 1(a) are as follows 
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, kir is the radial current 

coefficient; µ0 is permeability of vacuum; δr is radial air 
gap; Fm is magnetic motive force of the permanent magnet; 
Sz is axial pole area; Sr is radial pole area; Nr is the turns of 
radial windings. 

In the Fig. 1(b), Φz is the magnet flux of axial windings, 
Φp is the magnet flux of permanent magnet and iz is the 



current in z axis windings. Then, the equation of the axial 
force Fz of the rotor is as follows 
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δz is axial air gap; Nz is the turns of axial windings. 

B. Working Principle of 2 Degrees of Freedom 
Bearingless Induction Motor and Principle of Radial 
Forces Generation 

The stator of bearingless induction motor is wound 2- 
pole windings and 4-pole windings compoundly. The 
magnetic field produced by the 2-pole windings and the 
rotation magnetic field produced by the 4-pole windings 
affect each other in the gap. 2-pole windings are called as 
radial force windings. And the 4-pole windings are called 
as torque force windings, which produce rotation magnetic 
field and torque. The electrified torque windings will 
produce rotation magnetic field when bearingless induction 
motor work. If the electrified radial windings produce 
rotation magnetic field and the magnetic field of torque 
winding satisfy the following three conditions, then the 
interactional magnetic fields will produce radial suspension 
forces [5]-[6]: (1) P4=P2±1; (2) The two magnetic fields 
have the same rotation direction; (3) The currents which 
produce the magnetic field have the same frequency. 

Fig. 2 shows the working principle of the bearingless 
induction motor. When 4-pole torque windings and 2-pole 
radial suspension windings have been electrified by I4 and 
I2 as the figure shown, it will generate the same direction of 
4-pole torque flux linkage ψ4 and 2-pole radial flux linkage 
ψ2 in air gap 1-1, and the whole flux linkage will be 
increased to ψ4+ψ2, and electromagnetic suction force also 
be increased. While in air gap 2-2, ψ4 and ψ2 have the 
opposition direction, and the compound flux linkage will 
be decreased to ψ4-ψ2, and electromagnetic suction force 
will also be decreased, therefore, the rotor will be effected 
by electromagnetic compound force in the y positive 
direction. If the direction of current in suspension force 
windings will be changed, the radial electromagnetic 
compound force in y opposition direction will be generated. 
In the same way, electromagnetic compound force will be 
produced in x direction. So the rotor can be suspended in 
the balance central position by adjusting the magnitude and 
direction of the current in radial suspension force windings. 

C. Analysis of Suspension Forces on Bearingless 
Induction Motor 

2-pole radial suspension force windings and 4-pole 
torque windings are wound compoundly in slots of 
bearingless induction motor. The electromagnetic 
couplings of bearingless induction motor are very complex, 
because there are couplings between the 2-pole windings 
and 4-pole windings, and there are couplings between the 
windings themselves [3]. In order to analyse easily, 2-phase 
windings which has been changed from 3-phase windings 
in static coordinate through C3/2 and Cr/s transform is 
studied. Because the mutual inductance value between 
4-pole windings and 2-pole windings is 0, the value of 
torque windings self-inductance L4s and the value of radial 
windings self-inductance L2s are constant. The inductance 
matrix of the motor L can be obtained as  
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where α and β are the rotor radial displacement in the 
direction of x and y. M’ is the coefficient of mutual 
inductance of 4-pole windings and 2-pole windings. The 
subscript expression s is the component of self-inductance 
of the stator. According to the relationship of energy 
conversion, the magnetic energy stored in the windings can 
be written as 

T1
2m =W I LI                                  (4) 

where 
T

4 4 2 2d s q s d s q si i i i =  I  is current matrix. id4s 
and iq4s are the 4-pole windings current component in d-q 
coordinate, respectively. id2s and iq2s are the 2-pole 
windings current component in d-q coordinate, 
respectively. 

Substituting the above variable into (4), (4) can be 
written as 

             
(a)    3-pole radial                                (b) Magnetic circuit of axial           

magnetic bearing                                      magnetic bearing 

 
Fig. 2 Principle of producing radial suspension  

forces on  bearingless induction motor 
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Neglecting magnetic saturation, the Frx and Fry  are the 
radial forces in the x- and y-directions, where Frx=∂Wm/∂α 
and Fry=∂Wm/∂β, can be written as 
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D. Electromagnetic Torque of Bearingless Induction   
Motor 

The electromagnetic forces, which make the rotor 
suspend and bearingless induction motor operate, are 
produced by interactional flux linkage of 4-pole windings 
and 2-pole windings. Because the magnetic field produced 
by radial force windings is very smaller than the magnetic 
field produced by torque force windings, neglecting the 
radial force windings magnetic field, the rotor flux linkage 
can be satisfied as the following equations 
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The torque equation for bearingless induction motor is 
4

4 4 4( )m r
e dr q s qr d s

r

L
T p i i

L
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where ψdr and ψqr are the component of  rotor flux linkage 
in d-q coordinate, respectively. ωr is the speed of the rotor. 
ψd4s and ψq4s are the component of  stator torque flux 
linkage in d-q coordinate, respectively. Tr is the time 
constant of  rotor. p4  is the pole-pair number of torque 
windings. Lm4r is the mutual inductance between torque 
windings and rotor. 

E. Dynamic  Equations of Rotor on Bearingless Induction 
Motor 

Fig. 3 shows that the analysis of forces acting on the 
rotor of the 5 degrees of freedom bearingless inductiom 
motor. In the Fig. 3, the subscript “l” denotes 3 degrees of 
freedom magnetic bearing on the left side. The subscript 

“r” denotes the 2 degrees of freedom bearingless motor on 
the right side. “o” is the mass center of the  rotor; x and y are 
the coordinate of the mass center of the rotor; ol and or are 
the coordinate origins on the left and the right side, 
respectively. And redefine xr and yr as stationary 
coordinate, the system motion equation of the 5 degrees of 
freedom bearingless inductiom motor are as follows[7] 
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where m  is the mass of the rotor; flx,  fly, fz, fry and  fry are the 
external disturbance in the direction of lx , ly , z , xr and yr 
axis, respectively; J is the moment of inertia of the rotor; ωr  
is the mechanical rotational angular speed of the rotor; Te 
and TL are the electromagnetic torque and the load torque, 
respectively. 

State variables are chosen as 
TT

1 2 12 13[ , , , , ] , , , , , , , , , , , ,l l r r l l r r r dr qrX x x x x x y z x y x y z x y ω ψ ψ = ⋅⋅⋅ =     (10) 
Input variables are chosen as 

[ ] TT
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Output variables are chosen as 
[ ] [ ]T T

1 2 3 4 5 6 7, , , , , , , , , , , ,l l r r r rY y y y y y y y x y z x y ω ψ= =            (12) 
Substituting (1),(2), (6)~(8) and(10)~(12)  into (9), the 

state equation of the system is written as 

   

1 6

2 7

3 8

4 9

5 10

6 1

7 2

8 3 3

9 4 6 5 7

10 5 6 4 7

2
4 4 4

11 12 5 13 4

4
12 12 11 13

1 3( )
2

1 3( )
2

1 ( )

1( )

1( )

( )

1

ir lx

ir ly

iz z z

rx

ry

m r
L

r

m r

r

x x
x x
x x
x x
x x

x k u f
m

x k u f
m

x k u K x f
m
Mx u u u u f
m m

Mx u u u u f
m m

P L Px x u x u T
JL J

Lx x x x
T T

=
=
=
=
=

= − +

= − +

= − − +

= − +

= − + +

= − −

= − − + 4

4
13 13 11 12 5

1
r

m r

r r

u

Lx x x x u
T T






























 = − + +


      (13) 

Output equation is written as 
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Fig. 3 The analysis of forces acting on the rotor 
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It can be seen from (11) ~ (14) that the state equation of 
the 5 degrees of freedom bearingless induction motor is a 
7-input and 7-output nonlinear system. Fig. 4 shows the 
state equation structure diagram of 5 degrees of freedom 
bearingless induction motor. 

From (10) ~ (14), we can obtain as follows 
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Take the derivative of A(U) and obtain  
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according to theorem [1]. The dynamic feedback 
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From (17), the formulas of state feedback arithmetic is 
as follows  
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Fig.4 The state equation structure diagram of  bearingless induction motor 
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Substituting (17) into (15), Substituting flx=ks⋅xl, 
fly=ks⋅yl ,  fz=ks⋅ z ,  frx= ks⋅ xr and  fry=ks⋅ yr  into (15) ,  from 
(13)~ (15),  we can obtain the formula as follows  

1

2

3 3

4

5

2
4 4 4

6

4
7

3
2
3

2
1 1

1

s
l ir l

s
l ir l

s
iz z

s
r r

s
r r

m r
r L

r

m r
r r

r r

k
x k x

m m
k

y k y
m m

k
z k K x z

m m m
kMx x

m m
kMy y

m m
P L P

T
JL J

L
T T

φ

φ

φ

φ

φ

ω φ

ψ ψ φ

 = − +

 = − +

 = − − +

 = +

 = − +

 = −

 = − +


                       (19) 

The state equation structure diagram of bearingless 
induction motor after decoupling control is shown in Fig. 5 

III.   SYNTHETIZING SYSTEM 

A. Synthetizing Position of Rotor System 

The normalized linear system described in (19) can be 
synthesized using the linear system theory. The former 
three rows of (19) are the magnetic bearing displacement 
subsystems; the fourth and fifth rows are the rotor 
displacement subsystems of bearingless induction motor 
which belongs to the second-order integral system. For 
example, the transfer function of the displacement system 
of the rotor in the direction of xr axis is as follows 

Gk (s)=xr(s)/φ4(s)=M/m ⋅ s2                      (20) 
The characteristic equation of the system is as follows 

s2+2ξωns+ωn
2=0                               (21) 

The parameters ωn and ξ are chosen ωn =800 rad/s, 
ξ= 2 2 , the transfer function of state feedback is as 
follows 

a0s+a1=2ξωnm/M ⋅ s +ωn
2m/M                   (22) 

The closed loop transfer function of the system can be 
obtained as follows 
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The overshoot of the system is 
21 4.3%e

ξ π
ξσ

−
−= = , the 

adjusting time is ts=4/ξωn=7.06 ms. 

B. Synthetizing Speed System 

The sixth row of (19) is the subsystem of the speed ωr, 
which belongs to the first-order integral system. The 
transfer function of the speed subsystem can be chosen  
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The speed adjuster can be chosen as PI adjuster. The 
transfer function of the system is 
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According to requirement of the design adjuster theory, 
Gc(s) can be chosen as follows 
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The closed loop transfer function of the rotate speed 
system is as follows 
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V. SYSTEM SIMULATION 

The control strategy can be verified by simulating using 
the parameters of the designed prototype machine. The 
parameters of the system are as follows: The stator 
inductance Ls is 16.31×10-2 H; The rotor inductance Lr is 
16.778×10-2 H; The mutual inductance between stator and 

   
Fig.5 The state equation structure diagram of bearingless induction 

motor after decoupling control 



rotor Lm4r is 15.856×10-2 H; The mutual inductance 
coefficient between stator torque winding and radial force 
winding M is 78.2 H/m; The rotor resistance r is 11.48 Ω; 
The time constant of the rotor Tr is 1.46×10-2 s; The quality 
of rotor m is 2.85 kg; The moment of inertia J is 0.00769 
kg⋅m2; The pole pairs of torque windings P4is 2; The pole 
pairs of suspension windings P2 is 3; We can obtain the 
feedback parameters of radial forces system are 
a0=2ξωnm/M=41.23, a1=ωn

2m/M=23324.81 and the adjust 
parameter of torque system, from (25) and (26), 
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From (27) the closed loop transfer function is  
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A. Process of Rotor Rising 

When the initialization of x is –0.4 mm, the 
displacement curve starting up in x-direction is shown in 
Fig. 6. The simulation results have shown that the 
steady-state error of system approach to 0, the overshoot of 
system is very small and adjusting time is approach to 0.01 
s. When the initialization of x is –0.4 mm and y is –0.2 mm, 
the trajectory of mass center of rotor is shown in Fig. 7. The 
rotor position subsystem of decoupling control for 
bearingless induction motor has fine dynamic and static 
performance. 

B.     System of Speed 

The step response of the speed subsystem of bearingless 
induction motor is shown in Fig. 8. The expectation speed 
is 6 000 r/min, and the simulation results have shown that 
the overshoot of the system is less than 5% and the 
adjusting time is less than 0.6 s, so the speed subsystem has 
fine performance. 

V.  CONCLUSIONS 

In this paper, the decoupling control arithmetic adopting 
α-th order inverse system theory has been educed. From 
research results, this strategy is succeed in realizing 
dynamic decoupling control between the radial 
displacement subsystems and speed subsystem of the 5 
degrees of freedom bearingless induction motor. Not only 
each subsystems have been realized decoupling, but also all 
subsystems have been linearized and satisfy dynamic and 
static performance for this multivariable cross-coupling 
bearingless induction motor system. 
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Fig.  7  The trajectory of the mass center of the rotor 

        

Fig. 6   Start up displacement curve in the x-direction 

 
Fig. 8  Performance curve of the speed subsystem of 

bearingless induction motor 


	Decoupling Control for Bearingless Induction Motor with alpha-th Order Inverse System Theory,.pdf

