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Abstract— In this work, the nonlinear modelling and analy-
sis of an AMB system, based on theMBC500 Rotor Dynamics
from Launchpoint Technologies, is presented. This approach
is based on the harmonic domain linearization of the AMB
system around a nonlinear stationary solution, under different
rotating speeds. The nonlinear nature of the response appears
at high speeds, due to the large oscillations introduced by
the shaft unbalance. Using the presented methodology, low
frequency gain loss is detected when increasing the rotating
speed. This phenomenon causes the instability of the system,
leading to destructive crashes.

Index Terms— AMB system, rotor dynamics, nonlinear
analysis.

I. I NTRODUCTION

Active magnetic bearings (AMB) are considered a serious
design alternative in mechatronic systems because they
provide remarkable advantages over conventional bearings.
First, magnetic suspension requires no lubrication, making
possible very high rotational speeds with longer life for
the mechanical components. Second, magnetic bearings can
be used as actuators for making an active control of the
shaft [8]. However, this technology needs a control loop
to stabilize the plant, and the resulting nonlinear dynamics
introduced by the magnetic forces leads to sub-damped
responses. Hence, the analysis of these features is funda-
mental for obtaining an adequate behaviour. Consequently,
in the past, much work has been carried out on the subject
of nonlinear modelling, stability and bifurcation analysis
of this class of systems, [3], [4], [9] and in the design of
linearization procedures, [12].

On the other hand, harmonic domain techniques are
currently used for the analysis of nonlinear systems in
several engineering areas, [5], [2]. In this work, the non-
linear modelling and analysis in the harmonic domain of
a laboratory AMB system based on theMBC500 Rotor
Dynamicsfrom Launchpoint Technologies [10], extending
the linearization method proposed in [5], is presented.
The modelling is performed obtaining the evolution of the
LTV models calculated around different rotating speeds.
The nonlinear analysis of the resulting system shows the
presence of a bifurcation point leading to instability around
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Fig. 1. Laboratory AMB system scheme

400 Hz rotating speed. In addition, the harmonic analysis
of the nonlinearity shows the low frequency gain loss as the
rotating speed is increased. This gain loss which is specially
noted starting at 300 Hz, explains the instability observed,
and this effect appears in the vicinity of a mechanical
resonance corresponding to a flexible mode of the shaft.

In Section 2, the AMB system description and modelliza-
tion process is presented. In Section 3, the harmonic domain
nonlinear analysis of the AMB system is carried out from
a theoretical and a numerical point of view. In addition,
the experimental results presented in Section 4 validate the
proposed analysis and the conclusions end the paper.

II. AMB SYSTEM DESCRIPTION

The laboratory device which has been used as testbed
for the proposed methodology is composed by an AMB
system (i.e., the plant under study), a DSP based controller
and a PC supervisor used for programming and monitoring
purposes, Fig. 1. The plant is theMBC500 Rotor Dynamics
which has been specially designed for academical purposes
and it is composed of two AMBs and a rotor which includes
an air turbine drive, allowing speeds up to 22000 rpm. The
shaft position is measured by Hall effect sensors and the
currents causing the forces in the bearings to maintain the
hovering state, are driven by voltage amplifiers. Thus, the
plant inputs are the voltages given to the amplifiers from the
DSP controller, and the outputs are the voltages provided by
the Hall-effect sensors and filtered, in order to minimize the
noise at high frequencies. Those filtered measurements are
the input signals for the controller, which has been designed
for stabilizing the closed loop dynamics, [1], [6].

The modelling can be performed following different
ways, [1]. In this case, the analysis has been carried out per-
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forming a completeFinite Element Analysis(FEA) analysis,
starting from the CAD description of the shaft facilitated by
the device producer, Launchpoint Technologies [10].

A. Model of the mechanical subsystem

The mechanical part of the system is composed basically
by the shaft, where the magnetic forcesFx1

, Fx2
, Fy1

and
Fy2

generated by the bearings at distancel in the x and
y directions are considered the inputs , and the motion
generated at the bearings positions and the positions of the
Hall effect sensors, denoted by the variables{x1, x2, y1,
y2} and {X1, X2, Y1, Y2}, respectively, are the outputs
(see Fig. 2). The model, described by system equations (1),
includes the effects of the shaft flexibilities and has been
obtained by a FEA analisys using the Structural Dynamics
Toolbox of SDTools, starting from the mesh of the original
CAD description in SolidWorks, and considering the rigid
body modes and the first and the second elastic modes of
the shaft in thex andy directions.

[ẋshaft] = Ashaft [xshaft] + Bshaft [Fmag] (1)
»

Phall

Pbearing

–

= [Cshaft] [xshaft] = [Crig, Cflex] [xshaft]

where Fmag = (Fx1
, Fy1

, Fx2
, Fy2

)T are the magnetic
forces, Phall = (X1, Y1, X2, Y2)

T the shaft position in
the Hall sensors andPbearing = (x1, y1, x2, y2)

T the shaft
position in the bearings1.
In addition, other effects are:
1. Gravity effect: The gravity (g) is introduced as an
external force in order to maintain the same model for
the x and y axis, leading to augment the input matrix
with another termBweight (see footnote 1). The gravity
supposes a bended beam in they axis direction, even in
static position, due to the shaft flexibilities.
2. Rotating unbalance model: Different factors such as
imperfections on the rotor can produce the unbalancing.
Whenω 6= 0, this unbalance introduces a centrifugal force
Fctfi

which is proportional to the square of the rotating
velocity ω.
3. Gyroscopic effect: The shaft length and width lead to
neglect its influence in the work frequency range, [7].

The modelling of the unbalance has been performed
introducing external forces at different points of the shaft,
in order to simulate the effect of the centrifugal forces.

»

Fctf1

Fctf2

–

= ω2

»

sinωt
cosωt

–

(2)

1The system matricesAshaft, Bshaft, Cshaft, Brot and Bweight

are accessible in the web, http:/www.ehu.es/gaudee/jjugo/matrices.html

Those forces have been considered using the Structural
Dynamics toolbox and selecting the values of the gains
affecting each external force at different points exciting
translational and conical modes in order to get a similar
behaviour for simulated and experimental results. Thus, a
new termBrot (see footnote 1) must be included in the
input matrix.

Thus, the mechanical model is obtained linking those
effects, being the inputs to the system the forces in the
bearings, the centrifugal forces (2) and the gravity and being
the outputs the positions measured at the location of the
Hall sensors and bearings. So, the total input matrixBtotal

results
Btotal = [Bshaft, Brot, Bweight]

and the input forces areFtotal = (Fx1
+

0.5Fctf1
, Fy1

+ 0.5Fctf2
, Fx2

− 0.5Fctf1
, Fy2

−
0.5Fctf2

, Fctf1
, Fctf2

, Fctf1
, Fctf2

, Mg)T .

B. Model of the other elements

To complete the model of the laboratory device, it is
necessary to include now the rest of elements present in
the scheme of the figure 1: the forces provided by the
electromagnetic bearings, the dynamics of the amplifiers,
sensors and filters and, finally, the controller.

Magnetic forces:Due to the differential mode configu-
ration of the bearings, the electromagnetic forces can be
written as:

Fxi
= K

(ixi
+ i0)2

(xi − xg)2
− K

(ixi
− i0)2

(xi + xg)2
i = 1, 2 (3)

Fyi
= K

(iyi
+ i0 + ic)

2

(yi − yg)2
− K

(iyi
− i0 + ic)

2

(yi + yg)2
, i = 1, 2

whereK = 2.8 × 10−7N · m2/A2 is a geometric constant
depending on the bearing,i0 = 0.5A is a bias current,xg =
yg = 0.0004m is the mean distance between the bearing
and the rotor andixi

and iyi
, i = 1, 2, are the currents in

the two bearings for thex andy directions, respectively. In
they direction, an unbalanced current bias withic = 0.2 A
has been introduced in order to compensate the effect of
the gravity.

Amplifier’s dynamics:The amplifier’s dynamics has been
supplied by the device producer, [10], and it is given by:

ii =
0.25

(1 + 2.2 × 10−4s)
A/V × Vcontroli , i = 1, 2 (4)

in both,x andy, directions, that is, forixi
and iyi

.
Hall sensors:The linearized sensors’ response has been

supplied by the device producer and it is described by (5):

Vsensori
= 10V/mmXi ± 1V offset, i = 1, 2 (5)

in both,x andy, directions.
Filters’s dynamics : Noise reduction filters have been

developed and introduced for filtering the Hall sensors’s
measurements, being the model given by Equation (6).

Vfilti
=

4000

s + 4000
Vsensori

, i = 1, 2 (6)
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Controller design:After the modelling process, lineariz-
ing around an operating point and exploiting the symmetry
in the resulting matrix function, the design of stabilizing
controllers is possible, [6]. In this case two different stabi-
lizing controllers are considered, a PD and a PID controller,
using as input the filtered measurement in the sensors
Vfiltr and driving the ouput signal to the control voltages
Vcontrol. Considering the digital version of the controllers
implemented in the actual DSP, those are given by the
following discrete transfer functions:

PD(z) =
7.5(z − 0.5)

z
T = 1e − 4 s (7)

PID(z) =
7.5(z − 0.5)

z

0.6006(z − 0.998)

z − 1
(8)

The related continuous versions used for analysis pur-
poses are described by:

PD(s) =
14.25s + 15000

s + 20000
(9)

PID(s) =
14.25s + 15000

s + 20000

12(s/20 + 1)

s
(10)

Then, the AMB system represented in Fig. 1 can be
described by linking the shaft model (1), including rigid,
flexible and unbalanced motion effects, and magnetic forces
(3), sensor (5), filters (6) , amplifiers dynamics (4) and con-
trollers (9) and (10). This model is shown esquematically
in figure 3.

This model has been tested both in Scilab and Mat-
lab/Simulink environments, [1], [6], with satisfactory results
comparing with experimental measurements.

III. N ONLINEAR ANALYSIS OF THE AMB SYSTEM IN

THE HARMONIC DOMAIN

Here, the theoretical basis for the nonlinear analysis
are briefly introduced and then, they are applied to the
rotor-AMB system. This analysis is based in the fact that
the linearization of a nonlinear system around a periodic
solution yields to a periodic linear time-varying system
(PLTV). Applying the Floquet theorem, the stability of
the periodic solution can be determined by computing the
Floquet exponents or multipliers of the resulting PLTV
system. In this work, this procedure is carried out in the
harmonic domain.

For the sack of simplicity, a SISO nonlinear system de-
scribed by the following state-space equations is considered:

ẋ = f(x, u0, t) (11)

Herex(t) is the state vector,u0(t) the external source and
f(x, u0, t) is a nonlinear function. Considering a periodic
solution x0(t) of (11) with periodT , the linearization of
the system dynamics around the periodic solution, given a
small-signal perturbationζ(t), can be represented by the
following LTV system:

ζ̇(t) = G(t)ζ(t) + B u(t)
y(t) = Cζ(t)

(12)

whereG(t) = [Jf(x0(t))] is the jacobian matrix evaluated
along the periodic solutionx0(t). A small-signal input
vector u(t) and linear combination of the state variables
y(t) has been considered for obtaining an input-output rep-
resentation of the linearized system. The resulting matrices
B and C are constant matrices of appropriate dimensions
and G(t) is periodic with the same periodT , so system
equations (12) represent a PLTV system.

Considering exponentially modulated periodic (EMP)
signals as system input, [11], [13],u(t) =

∑

n∈Z

Unesnt,

with t ≥ 0, sn = s + jnω0, ands ∈ C, the steady-state
response of the PLTV system (12) is also an EMP signal,
beingζ(t) =

∑

n∈Z

Znesnt andy(t) =
∑

n∈Z

Ynesnt.

Now, expanding the system matrixG(t) as a Fourier
series G(t) =

∑

k∈Z

Gkejkω0t and introducing the series

expansions above in the system equation (12) and equating
the harmonic coefficients, the system can be expressed by
mean of an infinite dimensional matrix equation:

sZ = (Toeplitz(G)− N)Z + BU
Y = CZ

(13)

where the stateZ = [. . . , Z−1, Z0, Z+1, . . .]
T , input sig-

nal U = [. . . , U−1, U0, U+1, . . .]
T and output signalY =

[. . . , Y−1, Y0, Y+1, . . .] are double infinite vectors andN,
B and C are infinite dimensional block diagonal matrices.
The diagonal elements inB andC are infinite instances of
the input matrix B and output matrix C respectively andN
is given by:

N = diag {jnω0I} n ∈ Z (14)

being I the identity matrix. Finally,Toeplitz(G)represents
the double infinite Toeplitz matrix formed with the har-
monic components ofG:

toeplitz(G) =

2
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(15)
The stability of the PLTV system (12) is determined

through the roots of the system matrix of (13), which are
infinite eigenvalues of the type:λi±jkω0 i = 1 . . . n, k =



−∞, . . . ,∞. These eigenvalues are the Floquet exponents
of the LTV system (12) and the corresponding Floquet
multipliers aremi = e(λi±jkω0)T i = 1 . . . n.

For stability, Floquet multipliers should be locate inside
the unit circle, or equivalently, the Floquet exponents should
lie in the open left-hand plane. The evolution of the expo-
nents or multipliers when varying a parameter gives the
bifurcation locus of the system.

Now the previous analysis is applied to the rotor-AMB
system using the model presented in section (II). Obviously,
the stability analysis requires the previous calculation of
the nonlinear periodic solution for each rotation velocity,
which can be obtained by any numerical approach in the
time domain or in the harmonic domain. The advantage in
the harmonic domain is the possibility of obtain unstable
solutions, interesting for analysis purposes.

In closed loop, as it is shown in Figure 3, the only
external inputs to the system are the centrifugal forces for
a particular rotating speed, which determine the periodic
equilibrium point. System dynamics around this periodic
solution depend on the shaft dynamics, on the controller
and amplifier and on the magnetic force expression. In
particular, the nonlinear behaviour of the system is only due
to the magnetic force acting in the AMBs . The modeliza-
tion process, in order to obtain the harmonic equation (13),
can be performed separating the nonlinear and linear parts,
linearizing the nonlinear parts and combining the overall
system as a linear system following the scheme of Figure
3. Note that the linear parts must be expanded to all the
harmonic components according to (13)-(15).

Hence, as a first step in the stability analysis, the lin-
earization of the nonlinear part of the system around a
particular periodic solution is carried out. The resulting
jacobian matrixGF (t) is the jacobian of the magnetic force
and it is a time-dependent term that represents the nonlinear
subsystem. The magnetic force acting in each bearing only
depends on the current through this bearing and on the
spatial variable that is controlled for the bearing, so the
force jacobian can be written as:

GF =
2
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(16)

This jacobian can be obtained in the harmonic domain
analitically from (3) by means of Taylor series and Fourier
series expansion or following a numerical procedure as
follows. Althout the exact description of the system needs
of an infinity number of harmonics in the expansion, taking
into account that the contribution of each harmonic decays
when increasing the order, only a couple of harmonics are
needed to be considered, depending on the nonlinearity
grade, in order to obtain an accurate approximation.

Considering the AMB system with static MISO nonlin-
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Fig. 4. Numerical obtaining of Fourier coefficients for the linearization
process

earitiesy = f(ui), i = 1, 2, . . . , n, the numerical way for
obtaining the harmonic components of the jacobian (16) is
described in the scheme of figure 4. Starting from a periodic
equilibrium solution for the system under study, the inputs
ui i = 1, 2, . . . , n, must be described in the time-domain
and the partial derivatives off respect the inputs must be
calculated. Concretely, for the nonlinear magnetic forces,
the inputs are the bearing currents and the position. The
resulting signals representing the partial derivatives ofthe
forces around the periodic steady state are mathematically
described by a finite number of points along a period and
those can be transformed to the harmonic domain using
fft functions, obtaining the precised coefficients for the
jacobian (16), in a similar way to the partial derivatives
for an analitical approach.

The harmonic expansion for the global system matrix
G(t) (13) results from combining the force jacobian repre-
senting the nonlinear subsystems with the linear terms as
stated above, following the scheme of figure 3. Now, the
constant (but complex) harmonic state space equation (13)
can be written and the stability of the periodical solution can
be easily analyzed through the computation using matrix
based algorithms of the Floquet exponents, i.e., the system
eigenvalues, which are periodic with same period as the
solution under study.

Applying this procedure to the AMB system described
in section II, PLTV models describing the behaviour of the
system at different rotating speed can be obtained. However,
due to the high order of the obtained state-space equations,
even using only the two first harmonics of the expansion (72
state variables), the overall PLTV models are not shown in
this work. In addition, the system behaviour is analyzed by
mean of an unique Floquet exponent. This Floquet exponent
obtained for different rotating speeds resumes the stability
information.

Numerical results

Two different cases are considered, corresponding to the
use of the PD and PID controllers, (9) and (10), respectively.
In both cases, the analysis of the obtained periodic LTV
models shows how a Floquet exponent suddenly leads
toward instability for rotating speeds up to 400Hz (which
is similar to the experimentally obtained result). As can
be observed in Fig. 5, PD case, a spurious oscillation is
predicted near to 50 Hz (this fact is also experimentally
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observed), that is, the system presents a Hopf bifurcation
point depending of the rotating speed.2. In PID case, the
nonlinear effects leading a Hopf bifurcation appear at higher
rotating speeds, around 450 Hz, when the centrifugal forces
are more important, being the frequency of the predicted
oscillation around 30 Hz.

In order to explain this nonlinear effect, the continuous
component of the magnetic force has been studied at
different rotating speeds. In Fig. 6, the evolution of the
magnetic force continuous gain in the two bearings (x and
y directions) with respect to the currenti shows a gain loss,
which is remarkable in one of the bearings near the rotating
speed of 400 Hz and 450 Hz. That is, the nonlinear magnetic
force leads to a low frequency gain loss which causes
the system instability at high rotating speeds. In fact, the
influence of the harmonics introduced by the nonlinearity
reinforces this effect.

The form of the magnetic force respect to the coil
current parametrized respect to the distance of the shaft
from the origin, and the superposed actual evolution of this
magnetic force at different rotating speed is represented in
Figure 7. Observing this form, it can be concluded that the
nonlinearity is more relevant when increasing the distance
of the shaft from the origin. Then, since increasing the
rotating speed the centrifugal force caused by the unbalance
is higher, at higher speeds the curve traveled through the
force surface in the nonlinear zone is more relevant. The
result is the relative gain loss.

In fact, the PD controller try to compensate this loss
in order to maintain stability, distancing the shaft from
the origin in the sensor position and, hence, increasing
the importance of the nonlinearity since this system is
almost collocated. On the other hand, the PID controller
compensates the necessity of move the shaft from the origin
for compensating the gain loss and, for this reason, the
obtained result is better.

2Remember that the centrifugal forces depend on the rotatingspeed as
fctf ∼ ω2
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In any case, note that the stability problems appear when
the rotation behaviour gives very distorted signals, that is,
when appearing harmonics components with large level.
Actually, the unstable behaviour presented by the AMB
system is directly related to the mechanical resonance due
to the second flexible mode of the shaft, around 450 Hz,
[1]. The bearings are not able to give the necessary force
to compensate the mentioned resonance. As is observed
in figure 7, the magnetic force is limited by its nonlinear
nature.

IV. EXPERIMENTAL RESULTS

As has been stated in the section II, the modeled system
is a laboratory testbed which scheme is shown in figure
1. Implementing the digital versions of the controllers
used in the theoretical analysis, equations (7) and (8), the
same qualitative results are obtained. The main difference
between actual and theoretical ones is a light reduction of
the stability range in the experimental device, since the
actual frequency resonance of the device is lower and the
digital versions of the controllers add a time-delay to the
feedback system. Hence, when in the simulated model the
stability range is around 400 Hz for the PD and 450 Hz for
the PID in the real case this range is reduced in more that
a 10%, as can be observed in the figure 8.

However, validating the analysis performed in the previ-
ous section, the instability theoretically predicted around 50
Hz appears in the experimental testbed (PD controller). That
is, the analysis technique has been successfully applied toa
complex system, the AMB system, explaining its nonlinear
regimen.

V. CONCLUSIONS

In this paper, the harmonic domain (HD) modelling and
analysis of an AMB system, based on theMBC500 Rotor
Dynamics, is presented. This HD analysis technique allows
the obtaining of LTV models around nonlinear periodic
solutions. In this case, those models give the possibility
to analyze the AMB system at different rotating speeds,
showing a Hopf bifurcation point. In addition, the analysis
shows that this nonlinear effect is due to a low frequency
gain loss which appears when the shaft is rotating at speed
leading to large signal distortions. This approach has been
carried out with PD and PID controllers, obtaining similar
conclusions and agreeing the experimental and numerical
results.

Those results enforce the idea that linearization tech-
niques for the magnetic force or techniques limiting the
work zone around the origin of the shaft are the more
suitable methods in order to improve the behaviour of AMB
systems.

REFERENCES

[1] I. Arredondo, J. Jugo and V. Etxebarria, Modelling of a flexible
rotor AMB system, ACC American control conference,accepted,
Minneapolis, USA, 2006.

[2] S. Banerjee and .C Verghese, Nonlinear phenomena in power elec-
tronics, IEEE Press, 2001.

Fig. 8. Up: Rotating speed depending stability range using the PD and
PID controller. Down: Nonlinear oscillation range using the PD controller
in the xhall position.

[3] J.C. Ji, L. Yu and A.Y.T. Leung, Bifurcation behaviour ofa rotor
supported by active magnetic bearings, J. of Sound and Vibration,
vol. 235(1), pp. 133-151, 2000.

[4] J.C. Ji, Stability and Hopf bifurcation of a magnetic bearing system
with point delays, J. of Sound and Vibration, vol. 259(4), pp. 845-
856, 2003.

[5] J. Jugo, A. Anakabe and J.M. Collantes, Control design inthe
harmonic domain for microwave and RF circuits, IEE Proc. Control
Theory and Applications, vol. 150(2), pp. 127-131, 2003.

[6] J. Jugo, I. Arredondo, Analysis and control design of MIMO systems
based on symmetry properties, CDC-ECC’05, Seville, Spain, 2005.

[7] C. Lee, Vibration Analysis of Rotors, Kluwer academic, Dordrecht,
1993.

[8] G. Schweitzer, H. Bleuler, and A. Traxler,Active Magnetic Bearings:
Basics, Properties and Applications of Active Magnetic Bearings.vdf
Hochschulverlag AG an der ETH Zurich, 1994.

[9] N. Steinschaden and H. Springer, Nonlinear stability analysis of
active magnetic bearings, Proceedings of ISMB 5, California, USA,
1999.

[10] (2005) The LaunchPoint website. [Online]. Available:
http://www.launchpnt.com/

[11] N. M. Wereley and S. R. Hall, Frequency response of linear time
periodic systems, Proc. of the 29th IEEE Conference on Decision
and Control, Honolulu, Hawaii, pp. 3650-3655, 1990.

[12] H. Yasoshima, M. Kawanishi, H. Kannki, Application exact lin-
earization to AMB system, Proceedings of the8th International
Symposium on Magnetic Bearings, 2002.

[13] J. Zhou, T. Hagiwara and M. Araki, Stability analysis ofcontinuous-
time periodic systems via the harmonic analysis, IEEE Transaction
on Automatic control, vol. 47(2), pp. 292-298, 2002.


	Nonlinear Analysis of an AMB System in the Harmonic Domain.pdf

