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.Abstract – This paper presents general analytical 
tools to predict the damping and stiffness coefficients of 
electrodynamic dampers. Special attention will be 
drawn to the different cases when the conductor is 
either rotating or non-rotating. 

 
Index Terms – Electrodynamic damper, 

electrodynamic bearing, eddy current, inductance, 
rotating damping. 

I.  INTRODUCTION 

Electrodynamic vibration dampers are often considered 
in the design of rotating machinery as a contactless and 
hydrocarbon-free replacement for viscous dampers. Their 
simple geometry based on combinations of magnets and 
conductors in relative motion makes them an attractive and 
flexible choice for as well radial, axial and torsional 
damper applications. However, at the present very little 
knowledge is available, with few exceptions, on how to 
optimise these dampers. Furthermore, their influence on 
rotor dynamics is not yet fully understood. This paper 
presents general analytical tools to predict the damping and 
stiffness coefficients from an arbitrarily geometry based on 
electrical model parameters such as resistance and 
inductance. Special attention will be drawn to the different 
cases when the conductor is either rotating or non-rotating.  

II.  DAMPER LAYOUTS 

Several damper topologies are possible, and they can be 
divided into categories based on for instance type of 
magnetization and functionality: 
 

a) Axial flux radial damper, Fig. 1 
b) Radial flux radial damper, Fig. 2 
c) Axial flux axial damper 
d) Radial flux axial damper 

                                                           
 

e) Axial flux torsional damper 
f) Radial flux torsional damper 

 
To further categorize these dampers it is helpful to use 

subcategories based on type of magnet polarity depending 
on wether it is a homopolar or a heteropolar arrangement.  
Finally it is important to know if the conductor is rotating 
or not. If it is, then this type of dampers is normally 
referred to as electrodynamic bearings, which will be 
explained later.  

Using the terminology above, Fig. 1 shows a homopolar 
axial flux radial damper with stationary conductor, and 
Fig. 2 shows a homopolar radial flux combined radial and 
axial damper with rotating conductor, or simply “induction 
bearing”. These two dampers have been chosen since they 
represent two rather different dampers, and yet, using the 
general tools provided in this paper the reader would be 
able to analyse both. 

The magnet arrangements in Fig. 1 and Fig. 2 are 
homopolar, which is the preferred arrangement in radial 
and axial dampers, since it prevents unwanted eddy 
currents and losses from being induced.  

Heteropolar magnets though, are the preferred layout in 
torsional dampers. These dampers are also the kind of 
dampers which are best known: any permanent magnet 
motor with short circuited stator winding can be used for 
this purpose, and the corresponding electric and 
mechanical models are well known and will not be 
considered further in this paper.  

Finally, damper magnets are preferably permanent 
magnets, but also electromagnets can be used. The 
advantage with the latter is that they can be controlled 
using either a simple switch, or by an advanced regulating 
system. The analysis below is limited to permanent 
magnets and DC electromagnets. 
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Fig. 2. Radial flux radial/axial damper with moving conductor 
and enhanced radial stiffness. 
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Fig. 1.  Axial flux radial damper with moving magnets. 
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III.  PRINCIPLES OF OPERATION 

All electrodynamic dampers work according to the 
Faraday Induction Law. This means that a part of a 
conductor, or actually any material of a certain area A , 
moving relative to a magnetic flux gradient will be 
exposed to an induced voltage U  proportional to the flux 
change through that area: 

 

  
dt
dNU Φ= . (1) 

 
This is true both for rotating and non-rotating conductors. 
For a linear damper, which shall replace a viscous one, the 
flux gradient is designed to be constant within the 
operating range of the conductor, which includes the 
conductor thickness and the airgap, but not necessarily the 
gap required for the emergency bearing eg . Fig. 3 shows 
the flux distribution for the damper in Fig. 2, and is given 
as an example only. The constant gradient allows a voltage 
constant uk  to be defined such that 
 
 vkU u ⋅= , (2) 
 
where v  is the velocity to be damped, for instance the 
radial velocity defined in Fig. 2. If the conductor consists 
of a wound coil with N turns, then the area A  is well 
defined, and uk  can be calculated.  If, on the contrary, the 
conductor is a solid disc or cylinder, the number of turns is 
one, but the area is unknown and has to be estimated. This 
is the most difficult part in the analysis, and requires 
knowledge about the eddy current paths. Guidelines for 
how to find the shape of these currents are given in the 
analysis part.  

Once the current paths have been found, the resistance 
R and the inductance L can be calculated for each eddy 
current circuit. With U , R and L  known, the 
current/currents )(ti  follows from 

 

 
dt

tdiLtRitU )()()( += . (3) 

 
The induced currents interact with the magnetic flux 

B , both with the radial and the axial flux components, so 
that the damping force DF , or actually the total force if it 
includes other force components than purely damping 
ones, can be found by integrating the Lorenz force over the 
entire conductor volume 

 

 ∫∫∫ ×=
V

D dVBJF . (4) 

 
The analytical expression directly tells which force 

contributions that depend on eccentricity and which are 
speed dependent, that is which terms that can be 
recalculated into stiffness terms and damping terms 
respectively. 

This far the principles of operation have been described 
in very general terms. However, the author has found it 
very helpful to apply a traditional electromechanical 
actuator model in order to visualize and to understand how 
the damping and stiffness components and their 
corresponding cross coupling terms relates to Eq. 1-4. The 
model will be used in the next section.  

IV.  ANALYSIS 

The general explanation of electrodynamic dampers 
presented above will now be narrowed down to cover more 
specific details necessary for the understanding of these 
dampers. Special focus will be given to the damper with 
rotating conductor in Fig. 2. Obviously, if one can find 
analytical expressions for this damper, then it is trivial to 
put the rotational velocity to zero, and the result will be 
applicable to dampers with stationary conductor as well, 
with respect to some geometrical data that might have to 

Fig. 3. Radial flux density distribution. 



 

 

be recalculated as well. For more information on the latter 
damper, a variant of it was analysed by [1]. (The first 
successful commercial damper of this type was likely the 
one patented by [4] in 1989.) 

To simplify the analysis it is convenient to use a model 
of a voltage controlled electromechanical actuator, 
characterized by parameters like the resistance R , the 
reactance Lω and the force/current constant ik  

transforming the current to the damping force DF  such 
that 

 
  )(tikF iD ⋅= . (5) 
 

The input voltage U is zero (short circuit) and the induced 
back-EMF is now referred to as E .  

The analysis of the model parameters will begin with the 
back-EMF. The axially oriented magnets in Fig. 3 produce 
a radial flux via flux concentrating iron pole shoes, some 
of it penetrating the conductor surface. The maximum 
(absolute) flux density at the pole surface is 0B and it is 
directed radially inwards. If the flux space 
gradients 0/ ρddBr , expressed in stator fixed cylindrical 

coordinates 000 ,, φρ z  can be considered constant along 

the operating range opρ∆ of the damper, then the induced 
voltage  
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is proportional to the lateral velocity v , defined in Fig. 2. 
This proportionality is of fundamental importance if the 
properties of the damper shall resemble those of a viscous 
one. In Eq. 6 we have used that the radial velocity varies 
sinusoidally around the perimeter of the conductor and has 

a maximum value equal to v  in the direction of motion 

vφ . For the damper in Fig. 1 the interesting flux gradient is 

of course the radial gradient of the axial flux, 0/ ρddBz . 

To evaluate Eq. 6 the area A , which is illustrated in Fig. 
2, has to be estimated. In the previous section it was found 
that in the case of solid conductors this is not a trivial task. 
The shape of the surrounding eddy current is mainly 
determined by the type of motion the conductor performs, 
axial, radial or rotational. Let us for the analysis initially 
assume that both rotors in Fig. 1 and Fig. 2 move in radial 
direction, and that the rotor in Fig. 2 has not yet started to 
rotate. 

As a starting point, it is now apt to find the current path 
that encloses the largest flux change for this type of 
motion. Typically the eddy currents follow the perimeter 
of the magnets, but in the case of homopolar arrangements 
the currents are broken up into at least two separate 
circuits, see Fig. 2. For this particular cylindrical 
arrangement an analysis has been done in detail by the 
author [2]. For the disc in Fig. 1 a similar analysis would, 
depending on disc diameters, result in at least two, likely 
six, flat kidney shaped current circuits.  

However, a FEM-code is still of great value to illustrate 
and to help find these current paths. (Unfortunately, most 
codes are not suited for problem formulations involving 
radial translations. However, the circular whirl motion and 
the rotation can be transformed into one another, so that a 
3D-software with either time-step or Minkowski transform 
can be used to simulate the problem [2]. This was done in 
order to find the current paths in Fig. 2, 4 and 5.) 

Finally, the force/current constant ik  can, in the case of 
a non-ferromagnetic conductor, be found by integrating the 
Lorenz force over the whole conductor volume including 
all eddy currents. Thus 

 

 ∫∫∫ ×=
V

i dVBJ
I

k 1
 (7) 

 
assuming that all eddy currents are equal. If they are not, 
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Fig. 4. Delayed damping circuit dragged around by rotation. 
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Fig. 5. Restoring eddy current circuit induced by rotation. 



 

 

they have to be treated individually, as is done in [2]. From 
electromechanical theory it is known that the voltage 
constant uk equals the current constant ik , which offers 
an alternative way to calculate the forces, especially if the 
rotor is partly ferromagnetic so that the Lorenz force is not 
applicable.  

V.  DAMPING AND STIFFNESS COEFFICIENTS 

A.   Stationary Conductor 

Consider the simplest motion of all; the rotor moves 
with constant low speed v . Then the effect of the 
inductance is negligeble which implies a simple solution to 
the damping force. The current, which is constant, is 

 
 REI /=  (8) 
 

and the force  

 vkk
R

IkF uiiD ⋅=⋅= 1
 (9) 

 
which is proportional to the velocity v so that a damping 
coefficient c can be defined as  
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A far more important motion is whirl. If the frequency is 

so high that the inductance cannot be neglected, the current 
)(ti will raise according to Eq. 3. For a harmonic 

excitation like whirl, where 
 

 )sin(ˆ)( tEtE ω= , (11) 
 

the first effect of the inductance is that it delays the current 
and thus also the damping force an angle 

 

 
R
Lωϕ arctan= . (12) 

 
This in turn represents a stiffness component, which will 
increase with increasing frequency. At very high 
frequency, or in the case of a superconductor with almost 
zero AC-resistance, the phase shift tends to 2/π  and 
almost all damping is turned into stiffness. Thus for non-
zero vibrational frequencies an electrodynamic damper 
will always provide both stiffness and damping. The 
second effect is that the inductance will reduce the 
damping coefficient at higher frequencies and act as a high 
pass filter for vibrations. 

B.  Rotating Conductor 

If the conductor rotates, some cross coupling effects are 
introduced. If the inductance once again is neglected, one 
can apply the well-known theory of rotating damping 
known among others from [3]. Ref. [1] and [2] studied the 
case including the inductance, and found that the cross 
coupling stiffness ckc ω= predicted by [3] is delayed ϕ  

radians resulting in a pure stiffness term k and another, 
redefined cross-coupling stiffness ck that decreases at 
higher speed, thus allowing stable operation at high speeds 
without necessarily reaching the instability threashold 
predicted by [3]. Ref. [1] and [2] also found that the 
damping coefficient is reduced at higher speeds, compared 
to the non-rotating case, and that a cross-coupling term is 
added to the damping matrix. 

 
Ref. [2] has developed analytical expressions for the 

different damping and stiffness coefficients, and they are 
experimentally validated for a damper/bearing similar to 
the configuration in Fig. 2.  

VI.  RESULTS 

It is shown that all electrodynamic dampers offer both 
damping and stiffness properties. In the particular case of 
rotating conductors the stiffness is enhanced, and some 
cross coupling terms are introduced.  

 
It is believed that increased knowledge in this field will 

enable technical solutions to vibration problems which 
today can not be properly solved using either active control 
nor using passive viscous or rubber dampers. 
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