
 
Figure 1:  Force Generation in Segmented Trapezoidal Windings 
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.Abstract – Previous work has shown that the 
segmented displaced trapezoidal winding produces 
Lorentz forces in two orthogonal directions on a 
permanent magnet rotor.  This paper presents a unique 
collection of trapezoidal windings in a spherical 
geometry to provide active control of all 6 degrees of 
freedom.   Equations for force and torque generation 
are presented, and a “decoupling” control scheme is 
applied to the actuator such that the 3 bearing forces 
and 3 control torques are decoupled and independent.  
The construction of a prototype is also discussed and 
experimental results are presented with good 
agreement with the theory. 

 
Index Terms – Self Bearing Motor, Bearingless 

Motor, Spherical Actuator, Lorentz Force Actuator 

I.  INTRODUCTION 

In previous work [1], the segmented displaced 
trapezoidal winding (SDTW) was introduced for force and 
torque production in a cylindrical actuator geometry to 
form a self bearing motor with support in 2 radial degrees 
of freedom and one rotational degree of freedom.  As 
Figure 1 illustrates, two windings with opposite skew 
angle directions, α, are arranged one on top of another to 
form an “x” pattern.  Using this patented arrangement [2], 
Lorentz forces are generated on a set of permanent 
magnets, producing bi-directional control forces in two 
orthogonal directions per the following schedule: 
 

Table I  
 Trapezoidal Winding Actuation Summary 

Sgn(i11) Sgn(i13) Actuation 
>0 >0 +θ 
<0 <0 -θ 
<0 >0 +z 
>0 <0 -z 

 
 

The trapezoidal winding is a distributed winding sheet 
consisting of only a few strands of wire in thickness such 
that it is pliable and can be “molded” around a given 
geometry.  This paper describes the application of the 
trapezoidal winding onto a spherical, slotless back iron, 
geometry to produce 6 DOF active force and torque 
                                                            
. * This work is partially supported by the United States Air Force under 
contract number 29601-01-C-0174. 

generation.  The slotless construction results in smooth 
angular rotation by eliminating detent and cogging torque.  
Equations for 6 DOF control and for force and torque 
production are presented. The construction of a small (<29 
mm diameter) prototype is also discussed.  The technology 
is directly applicable to a MINI-CD ROM, but may be 
applied to other small machines.   
  

II. PROTOTYPE CONSTRUCTION 

Figure 2 shows a schematic of the 29 mm diameter 
spherical prototype.   The rotor is comprised of a mating 
pair of cylindrical cobalt iron sleeves, each internally tiled 
with alternating polarity permanent magnet arc segments 
that form the hemispherical inside surface as see in Figure 
3.  When mated, the rotor sleeves are positioned to align 
magnet poles of the same polarity.  The spherical stator is 
unique in that the copper conductors are machine wound 
directly over the epoxy insulated powdered iron core.  
Aluminum mandrels were used to attach the core to the 
winding machine and steel pins were axially inserted into 
pre-machines holes to capture and hold the winding end-
turns until the coils are secured with tape as seen in Figure 
4. Once the winding process was complete, the pins were 
removed and the coils were formed using two heated 



 
 

Figure 2:  Spherical Motor Diagram 
 

 
 

Figure 3:  Spherical Rotor Diagram 

 
Figure 4:  Stator Windings Before Forming 

 
 

 
Figure 5:  Formed Stator Winding and PM Rotor Half 

hemispherical cavities pressed around the coils.  The heat 
activates and fuses the bondable coating on the surface of 
each wire to neighbouring conductors thus bonding the 
wire entire winding into a solid spherical shape. The 
bondable coating also adheres to the epoxy insulated core 
thus solidly anchoring the winding to the supporting 
structure.   
 

The aluminum mandrels were removed and a single long 
screw was used to mount the stator to a PC board. The 
stator back-iron incorporates features required to stand the 
core away from the PC board mounting surface leaving 
room for the lead wires to exit while simultaneously 
clamping plastic rings in place to act as a backup bearing 
for the system.  The bonded stator assembly and half of the 
rotor can be seen in Figure 5.   
 

The stator core profile is formed by using off–center 
radii that directly compensate for the increasing winding 
thickness with increasing latitude such that the clearance 
gap between the outer surface of the winding and the rotor 
is maintained as a uniform thickness spherical shell. At the 
stator “equator”, the slots are shallow and relatively wide, 

however, at the higher latitudes the slots deepen as they 
narrow to maintain the same cross sectional slot area for 
the windings.  The cylindrical outer shape of the rotor 
provides increasing magnet thickness with increasing 
latitude and thus helps maintain the flux levels despite the 
increase in magnetic gap. 

III.  FORCE AND TORQUE GENERATION 

Figure 6 shows a cut-away view of a generic trapezoidal 
winding spherical actuator (with PM magnets on the ID 
instead of the outside of the stator) at the mid-plane 
looking downward onto the actuator.  As the figure shows, 
the windings are arranged into 4 segments with 4 windings 
in each segment.  With this arrangement, independent 
surface forces are generated on the rotor by each segment.  
By simultaneously modulating the current (forces) in 
opposing segments, control forces Fx and Fy are generated, 
along with the torque about the about the z-axis, Tz.  The z-
direction force, Fz, and the torques about the x and y axes 
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Figure 6:  Force and Torque Production Note: Drawn as an inside rotor 
system – if magnets were on the outside their polarity would need to 

be inverted 

are generated using the differential skew angle of the direct 
and displaced coils in a given segment (previously shown 
in Figure 1) and by modulating these forces in opposing 
segments.   Figure 6 also shows cut-away views in the x-z 
and y-z planes.  
 

Control of each of the 6 DOF is first evaluated using 6 
control currents, ic=[ ix, iy, iz, iθx, iθy iθz]T and distributing 
them into the stator winding currents, is, using the 
following physically motivated 8x6 mapping matrix, W. 
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Assuming that this actuator acts as a bearing in the x, y, 

z, θx, and θy degrees of freedom (small displacements) and 
provides motoring about the θz axis (large displacement), 
then based on the rotor home position shown in Figure 6, 
the symmetric commutation mapping equations are:    
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where iφ=[i11, i12, i13, i14, i21, …. i44]T is the vector of phase 
currents corresponding to Figure 6 and Y is the 16x8 
commutation mapping matrix in which the 4x2 matrix, H 
is: 
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  (3) 
 
where M is the number of permanent magnet pole pairs 
and γ is the phase lag or lead depending on the skew angle 
of the particular phase between the angular motion, θz, and 
the phase current, ik,j.  This term can be neglected for this 
design because small displacements in the z direction are 
assumed.     
 

Force and torque computations are accomplished using 
the following coordinate systems: 
 

• Frame n:  [n1,n2,n3] global Cartesian reference 
frame in line with x, y and z axes in Figure 6 

• Frame a:  [a1,a2,a3] slot Cartesian reference 
frame in line with the center of a given slot on the 



equator of the sphere.  Simple rotation about n3 
by angle ψ. 

• Frame b:  [b1,b2,b3] slot Cartesian reference 
frame in line with a given skewed coil.  Simple 
rotation about a1 by the skew angle, α. 

• Frame S1: [r1,θ1,φ1] slot spherical reference 
frame with respect to reference frame b. 

• Frame c: [c1,c2,c3]  rotating Cartesian reference 
frame embedded in the rotor.  Simple rotation 
about n3 by the angle θz+π/16. 

• Frame S2: [r2, θ2, φ2] rotor spherical reference 
frame with respect to reference frame c. 

 
Conversions between each of these reference frames 

are accomplished using simple Euler angle and spherical 
coordinate transformations which are well documented 
elsewhere.   The phase currents of equation (2) are 
distributed into the appropriate slots of the actuator as 
shown in Figure 6.  This results in a total of 32 current 
sheets (16 direct and 16 displaced) that comprise the 
stator.  These current sheets are numbered beginning 
with n=1 for phase φ41 and continuing CCW such that 
n=16 for phase φ42, n=17 for phase φ43 and n=32 for 
phase φ44. The total current per unit latitude at the 
equator in a given sheet is given in spherical reference 
frame S1 as: 
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where, N is the number of conductors per slot, in is the 
current in the nth (n=1 to 32) current sheet and ro is the 
rotor inner radius.  The slot total current vector is then 
constructed as: 
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and is related to the phase current vector by the phase 
distribution matrix, Λ: 
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 The flux density due to the permanent magnets is defined 
in spherical reference frame S2 as: 
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where Bpm is the permanent magnet flux density 
magnitude, which is assumed to be constant across the pole 
for the purposes of this paper, and m indicates the specific 
permanent magnet under consideration around the 
circumference of the rotor (m=1 to 8).  In this definition, 
m=1 corresponds to the permanent magnet that is 
intersected by the coordinate, c1, embedded in the rotor.  
Subsequent PM segments are numbered sequentially in a 
CCW fashion around the equator of the rotor looking 
downward as in Figure 6.   
 
Computation of the force and torque on the rotor is 
accomplished by discretizing the spherical domain into 
discrete points and computing the control force vector, 
Fc=[Fx, Fy, Fz, Tx, Ty, Tz]T as: 
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where Φ is the flux linkage matrix and Fn=[Fx, Fy, Fz]T at 
the nth slot and Tn=[Tx, Ty, Tz]T at the nth slot.  Each 
element of Φ is then computed as: 
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where Fn is the force per unit current due to the nth current 
sheet, ∆Lφ and ∆Lθ are the discretization lengths in the 
latitudinal and longitudinal directions, and Pi is the 
position vector from the center of the sphere to any point 
on the line of action of the ith  discrete actuator force, fi .  
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Figure 7:  Bearing Force for iz=1.0 A 
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Figure 8:  Motor Torque for iθz = 1.0 A 
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Figure 9:  Bearing Force for ix=1.0 A 
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Figure 10:  Motor Torque for iθx=1.0 A 
 

IV.  DECOUPLING CONTROL 

The current mapping matrix, W, in equation (1) is 
physically motivated by the layout of the spherical 
actuator.  As will be seen in the results section that 
follows, the use of W results in cross-coupled current 
gains.  It is desired to decouple the actuator by defining a 
different mapping matrix.  The approach presented in [3] 
gives the general result for decoupling control of pure 
Lorentz force actuators and is applicable to the spherical 
actuator.  The objective of decoupling control is to find W 
such that independent control forces in all 6 degrees of 
freedom are generated at all angular motoring positions, θz.  
According to [3], any arbitrary actuator current gain 
matrix, Ki, is achievable under the following mapping: 
 

iW A K+=   (11) 
 

where A+=AT(AAT)-1 and is the Moore-Penrose pseudo-
inverse of the underdetermined model, A=ΦΛΥ, as long as 
the pseudo-inverse exists.  The test for existence indicates 
that the actuator can be decoupled as long as: 
 

0         T
zAA θ≠ ∀   (12) 

V.  RESULTS 

For the spherical actuator prototype the rotor inner 
diameter is ro=11.125 mm, there are 25 turns of 30 AWG 
wire per winding with two windings per slot, the calculated 
flux density is Bpm=0.73 T, the actual average skew angle 
is α=10.4o and the PM rotor angle is β=42.4o.  These 
numbers were used in equations (1)-(10) to generate force 
and torque curves versus angular rotation over one 
permanent magnet pole pitch.  Note that this case 
corresponds to the physically motivated current mapping, 
W, which is not decoupled necessarily.  Figure 7 shows the 
bearing forces for a control current of iz=1.0, and all other 
control currents zero.   The average force in the z-direction 
is 1.1 N for the actuator and independent bearing forces 
and torques are generated.  Figure 8 shows the motoring 
torque for a control current of iθz = 1.0 A.  Note that in 
both cases there is a slight ripple in the force and torque 
production versus rotor angle, θz. 
 

Figure 9 shows the x and y direction forces that result 
for a control current of ix=1.0.  Similarly, Figure 10 shows 
the θx and θy direction torques that result for a control 
current of iθx = 1.0 A.  These curves indicate that in 
addition to the ripple in the force and torque production 
there is a cross-coupling in the x and y directions for this 
actuator under the current control mapping defined in 
equation (1).  Note that at certain rotor angles the cross 
coupling is degenerate to zero, but at other rotor angles it is 
15-20% of the direct forces.  The cross-coupling is brought 
about by the layout of the actuator and could be reduced 
via an increased number of poles or by use of 
asymmetrical commutation.  The approach taken here is to 
use the decoupling control of equation (11).  Using the 
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Figure 11:  Test Parameter for Existence 
Of Decoupling Control 
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Figure 12:  Motor Torque for iθx=1.0 A under decoupling control 
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Figure 13:  Motor Force ifor ix=1.0A under decoupling control 

previous results, the direct current gains are arranged in the 
desired current gain matrix as follows: 
 

2.6 0 0 0 0 0
0 2.6 0 0 0 0
0 0 1.1 0 0 0
0 0 0 0.0044 0 0
0 0 0 0 0.0044 0
0 0 0 0 0 0.06
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      (12) 

 
For comparison, this desired current gain matrix is used 

in the decoupling control algorithm to generate similar 
results.  The first question is whether a control mapping, 
W, exists that can decouple the actuator at all rotor angles.  
Figure 11 shows the results of the existence test defined in 
equation (12).  In this case, the test parameter is quite 
small at all rotor angles, but is not zero at any one, 
therefore, the actuator can be decoupled using this 
approach.  Figure 12 shows the θx and θy direction torques 

that result for a control current of iθx = 1.0 A. Figure 13 
shows the x and y direction forces that result for a control 
current of ix=1.0.  Note that the torque ripple and the cross-
coupling have been removed from the system. 

VI. DISCUSSION 

The various current gains and effective winding skew 
angle were determined by analysis of measured back emf. 
To facilitate the generated voltage and phase measurement 
over the necessary range of radial and axial positions, the 
spherical actuator prototype was mounted in a milling 
machine capable of spinning the PM rotor while holding 
the stator at various X, Y, and Z positions. The 
experimental results showed a z-direction force current 
gain of 0.145 N/Amp and an average torque current gain of 
0.009 N-m/Amp. The average back emf constant was 
found to be 0.94 volts/1000 rpm which equates to a “no-
loss” torque constant of 0.009 N-m/A. The resulting 
measured skew angle varied from phase to phase and 
maintained an average of 10.4 degrees.  This is compared 
to a z-direction force current gain of 0.10 N/Amp and a 
torque current gain of 0.56 N-m/Amp computed using the 
theoretical model.  The difference between the experiment 
and theory is probably due to the variation in the 
construction of the actuator in terms of the skew angle and 
the number of turns varying from phase to phase.  Finally, 
additional tests indicate a relatively low phase inductance 
of 120 µH and a phase resistance of 3.2Ω.  The current 
gain for the control torques is seen to be quite low at 4.4 
N-mm/Ampere for θx and θy, and 60.0 N-mm/Ampere for 
θz.  This is due to the low skew angle of 10.4 degrees that 
resulted after winding.  A larger skew angle would trade 
off the  θz drive torque with the θx and θy torques.  The 
maximum design current is 1.0 Amperes indicating a peak 
bearing force of 2.6 N and a peak torque of 60 N-mm. 

VII. CONCLUSIONS 

This paper presented a new type of spherical actuator 
that uses a collection of segmented trapezoidal windings to 
produce active control in 6 degrees of freedom.  
Agreement was seen between experimental and theoretical 
force and torque production.   Actuator control using a 
physically motivated current mapping and symmetric 
commutation sequence resulted in cross-coupling in the x 
and y directions.  The actuator was decoupled using a 
model based control method that inverts the system model 
onto itself.  
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