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.Abstract – This paper proposes a new way to 
combine radial and axial active magnetic bearings in a 
unit. The proposed active magnetic bearing(AMB) has 
no large axial disk and instead use the Lorentz force for 
axial control. Thus this AMB system can be more 
compact. Its structure is basically similar to the 
homopolar AMB with four cores circumferentially 
connected by yokes. But it has two-layer windings for 
radial and axial controls; one is configured like a 
homopolar AMB, and the other is the same as that of a 
4-pole heteropolar AMB. Since each winding can be 
used for radial control, the proposed system has two 
kinds of operating principle according to the radial 
control type. As for axial control action, it uses the 
Lorentz force generated by the interaction of the bias 
flux for radial control and the axial control flux. The 
feasibility of this scheme is experimentally verified by 
using a simple PD controller with a feedforward loop. 

 
Index Terms – Active magnetic bearing, Combined 

radial and axial bearings, Lorentz-type axial bearing, 
Axial-diskless magnetic bearing. 

I.  INTRODUCTION 

For the application of AMB in various industrial 
fields, more compact, less expensive and simple-structured 
AMBs are required. Especially to make the system small 
and compact, the conventional axial AMB with a disk 
placed between two axial electromagnets should be 
improved, because the large diameter of the axial disk 
limits the maximum rotational speed and such an axial 
magnetic bearing makes the system large and in addition, 
makes the fabrication so troublesome. Thus, so far, many 
researchers have attempted to remove the axial disk. One 
of them is a cone-shaped magnetic bearing [1], [2], but it is 
not the ultimate solution for small size, even if it has no 
axial disk. As the most compact AMB, a miniaturized 
AMB with solid cores has also been developed [3], [4]. For 
compactness, such a magnetic bearing including 
permanent magnets for passive levitation is advantageous, 
but a low damping is its weak point that should be 
considered for practical use. On the other hand, a diskless 
axial AMB using the Lorentz force has been proposed 
recently [5], [6]. But since they are based on the hybrid 
AMB, inevitably they require at least two magnetic 
bearing units using the bias magnetic flux by permanent 
magnet in common.  

In this paper, a new design for small-sized AMB is 
introduced, which enables the radial and axial control in 
one bearing unit without the axial disk. It consists of four 
U-shaped cores circumferentially connected by yokes and 
two-layer windings for radial and axial controls; one is 
configured like a homopolar AMB, and the other is the 
same as that of a 4-pole heteropolar AMB. Since either 
winding can be used for radial control, the proposed 
system has two kinds of operating principle according to 
the radial control type; coupled and uncoupled bias flux 
types. For radial control, the control flux is added to or 
subtracted from the bias flux, which results in radial 
Maxwell force to return the rotor to a center position. 
Meanwhile, for axial control, it uses the Lorentz force 
generated by the interaction of the bias flux for radial 
control and the axial control flux. In this paper, we first 
introduce the basic structure and the two operating 
principles and then theoretically derive the expressions for 
radial and axial electromagnetic forces based on the 
magnetic circuit analysis. By using a simple decentralized 
PD controller with a feed-forward loop for the 
compensation of a coupled effect, the rotor was 
successfully levitated. The experimental results are shown 
to validate the analytical findings and evaluate the 
performance of the newly designed AMB. 

II.  STRUCTURE AND OPERATING PRINCIPLE 

Fig. 1 shows the structure of the proposed AMB that has 
a configuration of a conventional homopolar AMB with 

 

 
 

Fig. 1 Structure of the proposed AMB 
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Fig. 2 Magnetic flux flow; (a) side view, (b) front view 
 
 
cores circumferentially connected to each other, or in other 
words, a configuration of a four-pole heteropolar AMB 
where each core is divided in two axially. The cores have 
two-layer coil windings; one(marked as ‘inner coil’ in the 
figure) makes a magnetic flux flow in each U-shaped core 
independently and the other(marked as ‘outer coil’) 
generates a flux flowing through adjacent cores. Here, it is 
important to note that either of the windings can be used 
for the radial control, which depends on what coil the bias 
current flows in. When the outer coil is used for radial 
control, it works just like a four-pole AMB. In this case, 
the bias flux as well as the radial control flux flow on the 
plane perpendicular to the shaft axis as shown in Fig. 2(b), 
that is, the bias fluxes for y- and z-directional controls are 
coupled. Meanwhile, the axial control flux produced by the 
inner coil flows in the path composed of a U-shaped core, 
air gaps, and rotor, as shown in Fig. 2(a). Then, the inner 
coil can be regarded as a virtual coil in the magnetic field 
produced by the bias flux. Therefore, the Lorentz force acts 
on the coil, which results in axial force reacting on the 
rotor because the coil is fixed in the core. This is the key 
idea that this paper proposes. The direction and strength of 
the axial force can be controlled by the axial control 
current.  

On the other hand, when the inner coil is used for 
radial control, its levitation principle is very similar to that 
of the conventional homopolar AMB. But actually, it 

should be heteropolar, that is, the rotor experiences four N, 
S, N, S-pole cores in turn during a rotation. In other words, 
the direction of iφ  of Fig. 2(a) is different from that of the 
adjacent cores. This is so as to generate the axial force in 
the same direction at the cores when the flux oφ  is applied. 
In this case, note that the bias fluxes generated by four 
cores have independent paths. From an axial-control point 
of view, we can consider that the outer coil makes a 
magnetic field where a virtual coil with bias current lies. 
Thus the Lorentz force is generated again, which can be 
controlled by the field. Hereafter, for these two 
configurations, magnetic circuit analysis and some 
levitation experimental results are introduced. 

III.  MAGNETIC FORCE ANALYSIS 

One of the magnetic fluxes, oφ  and iφ  as shown in 
Fig. 2(a), corresponds to the radial control flux, crφ , with 
bias flux, bφ , and the other is the axial control flux, cxφ . 
Even whichever is in charge of the radial control, the radial 
force in y direction can be expressed as 
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means the destabilizing force induced by the axial control 
flux, that is, the coupled effect between radial and axial 
control. Here, 7( 4 10 / )o H mµ π −= ×  is the permeability of 
free space and Ag is the area of magnetic pole face. 
Subscripts I and III stand for the cores located in +y and –y 
directions, respectively. Fig. 3 shows a magnetic circuit 
model by each coil winding. 

A.  Case of uncoupled bias flux path( i b crφ φ φ= + ) 

When the bias and radial control fluxes have an 
independent path, iφ  of Fig. 2(a) can be considered as bφ  
+ (or –) crφ . Then, the magnetic flux in the upper and 
lower cores can be expressed as 
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where  ( )o oIg g y= − ,  ( )o oIIIg g y= +  
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Here,  is the number of the inner coil turns,  and  
are the bias and radial control currents, respectively, and  

iN bI yi
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Fig. 3 Magnetic circuit models; (a) for inner coil, and (b) for outer coils 

 
 

og  is the nominal air gap between stator and rotor. 
Next, the axial control fluxes( o cxφ φ= ) flow through 

the paths as depicted in Fig. 2(b). Its magnetic circuit can 
be simply modelled as Fig. 3(b). By using the Kirchhoff’s 
law, the magnetic fluxes by axial control current can be 
calculated from 
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Here,  is the number of the outer coil turns, oN ( )x oi I=  is 
the axial control current, and y and z is the small 
displacements in y- and z- directions, respectively. Solving 
(4), we can get the axial control fluxes going across the 
upper and lower air gaps as 
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Now, we can derive the force from (1), (3), (5) and 
(6). But, instead of showing the full equation here, we 
introduce its linearized form that is more useful for 
controller design. Assuming the control current and the 
rotor displacement are enough small compared with the 

bias current and the nominal air gap, the linearized form is 
obtained by using Taylor series expansion as 
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where Ky and Kiy are defined as the position stiffness and 
the current stiffness, respectively, just like a conventional 
AMB, and Krx is a destabilizing force generated by the 
axial control current, that is the coefficient of the coupled 
term. Note that Krx is independent from the radial 
displacement. 

 
On the other hand, the Lorentz-type axial force can be 

determined by the magnetic field(bias flux density) of air 
gaps and the magneto-motive force(mmf) for axial control. 
Here, since the mmf (= NiIb) at the air gaps can be 
considered as a constant, so we need to adjust the magnetic 
field strength for generating the axial control force. The 
magnetic flux density and axial force can be given as 
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where L is the effective length of coil, n(= 4) is the number 
of cores generating the axial force, and ixK  is the axial-
direction current stiffness. Here, note that (11) is not a 
function of radial displacement. 

B.  Case of coupled bias flux path 

This is the case that the outer coil of Fig. 1 works for 
the radial control, which means ( )o b cr b crorφ φ φ φ φ= + − , 
and the inner coil is used for the axial control. Since the 
path of the magnetic flux produced by the outer coil 
includes the adjacent cores, it is called the case that the 
bias fluxes are coupled. In this case, the magnetic fluxes at 
the air gaps can be obtained from 
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On the other hands, the axial control flux( i cφ φ= )can 

be expressed by using magnetic circuit model of Fig. 3(a) 
as 
 

2
o g i xi i

cx
r o

A N iN I
R g

µ
φ = =  (15) 

 

Then, in a similar way as before, the linearized magnetic 
force is expressed again as 
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Here, it is important to make sure that these coefficients of 
linearized force equation are the very same as those of (9). 
This means that the above two cases can hold the 
controller design process in common, even if their 
operating principles are different from each other. 

For the axial control, since the bias current for the 
radial control can be assumed to make the constant 
magnetic field, we can control the axial force by adjusting 
the current of inner coils. The bias magnetic flux density 
and the axial force(Lorentz force) can be given as 
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Note that (20) is the same as (11), too. 

IV.  DESIGN OF A CONTROLLER WITH FEEDFORWARD LOOP 

When a conventional 4-d.o.f. AMB controlled by a 
simple decentralized PD controller radially supports a 
rotor, the well-known equation of motion in the bearing 
fixed coordinate is written as 
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where is a radial displacement vector 
of rotor at each bearing position, M is a mass matrix, K and  

{ 1 2 1 2
Ty y z z=q

 
 

Fig. 4 Block diagram for radial controller with a feedforward loop 
 
 
Ki are the position stiffness and the current stiffness 
matrices which are concerned with the first and the second 
coefficients of (9) or (18), respectively, K s  and K A  are the 
displacement sensor gain and the power amplifier gain, 
respectively, and K p  and K d  are the proportional and the 
derivative gain matrices. Generally fd is a disturbance term 
but here, it means the destabilizing force caused by axial 
control flux.  

For the proposed AMB, a radial controller was 
designed based on (21), but a feedforward loop was added 
for compensation of fd. Fig. 4 shows the block diagram; Gc 
and GR are the transfer functions of PD controller and the 
uncontrolled rotor system; Gd is the disturbance concerned 
with (8) or (17); and Gff is the transfer function of the 
feedforward controller to get rid of the effect of Gd, which 
is determined as  
 

( ) 1
s AK K −= −ff i c dG K G G  (22) 

 

In (22), note that the transfer functions Gd and Ki are 
accurately modeled, the deterministic disturbance Gd 
caused by the axial control current can be well 
compensated. In addition, even if it is hard to obtain the 
accurate model, it is not so serious because the existence of 
axial control flux can be regarded as a small variation of 
the bias flux. 

On the other hand, the axial controller design is 
simpler. Neglecting the derivation process, we can write 
the equation of motion including the PD controller as 
 

0s A dx ix s A px ixmx nK K K K x nK K K K x+ + =  (23) 
 

Here, m is the rotor mass and Kpx and Kdx are the 
proportional and derivative gains, respectively. Unlike 
general AMBs, (23) doesn’t include the position stiffness 
term, which means that it is marginally stable(or passively 
stable depending on the radial stability) even without any 
controller. It is a good point of Lorentz-type AMB. 

V.  EXPERIMENTAL SETUP AND RESULTS 

Prior to the experiment, some FEM analyses were 
performed to predict the feasibility of the proposed AMB. 
Fig. 5 shows a plot of the control current versus axial  



 
 

Fig. 5 FEM analysis results: axial control current versus force 
 
 

magnetic force. The linearity of the figure meets the 
characteristics of Lorentz force well and its slope stands 
for the current stiffness ixK  in x direction. 
 

The experimental system consists of AMB units 
developed in laboratory, five eddy-current-type proximity 
probes, a digital controller using a Power-PC board 
(dSPACE Inc., DS1103), and a 9-channel linear power 
amplifier. Radial displacements of the rotor measured by 
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Fig. 6 (a) Prototype of the proposed AMB and (b) its stator structure 

TABLE I 
SPECIFICATION OF THE PROTOTYPE 

Parameter Value 
pole face area 102 mm2

air gap 0.4 mm 
upper 60 coil turn lower 60 

position stiffness 4.87×104 N/m 
current stiffness 15 N/A 

mass 0.28 kg 
bias current 1.3 A 

 
proximity probes are input to the control board of the host 
PC and 12-bit A/D converted at the sampling frequency of 
5 kHz. The control currents from the power amplifier are 
fed to coils, producing the radial and axial electromagnetic 
forces. 
 

Fig. 6 shows the prototype integrated AMB. Two 
bearing planes support the rotor and a U-shaped core on 
stator has double-layer coils. The specification of the 
designed AMB is listed in TABLE I. The proposed AMB 
has the capability of 3-d.o.f control with only one magnetic 
bearing unit, and we built 5-d.o.f AMB system with two 
bearing planes. 

Fig. 7 to Fig. 10 compare impulse responses of the 
controlled AMB when the levitated rotor(not rotated) is 
impacted in axial(x) and radial(y, z) directions for the two 
proposed control configuration. In the controlled AMB, the 
oscillation by impact are damped out in 0.3 sec and 0.2 sec 
about x- and y-direction, respectively. While, the settling 
times in uncontrolled axial responses were found to 28 sec 
and 30 sec, respectively. The axial uncontrolled and 
controlled eigenvalues are estimated to be  
 

1,2 0.28 30.7uc jλ = − ± and 1,2 25.6 82.7c jλ = − ±  
 
 

0 1 2 3 4

-600

-400

-200

0

200

400

600

di
sp

la
ce

m
en

t, 
µm

time, sec

 : w/  controlled 
 : w/o controlled

 
(a) x-direction 
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(b) y1 and z1 direction 

Fig. 7 Responses to x-directional impulse under independent radial 
control  
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Fig. 8 Responses to y directional impulse under independent radial control 
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(a) x direction 
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(b) y1 and z1 direction 

Fig. 9 Responses to x directional impulse under coupled radial control 
 
 

in the independent bias flux type and 
 

1,2 0.11 31.3uc jλ = − ± and 1,2 24.8 81.6c jλ = − ±  
 

in the coupled bias flux type. One can see that the 
feedforward control loop effectively compensates for the 
disturbance by the axial control current at the radial 
control. 

VI.  CONCLUSIONS 

We proposed a new compact AMB system that had 
the integrated radial and axial bearing without the axial  
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Fig.10 Responses to y directional impulse under coupled radial control 
 
 
disk. Its has some merits: most of all, it is possible to 
design a small-size AMB, and it has two kinds of operating 
principle which are modelled in the same equation of 
motion and thus can use the same controller. This means 
the role of each coil can be switched in an emergency even 
during the operation. The feasibility of the proposed AMB 
was experimentally verified for both of the proposed 
principles. 
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