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Outline 

An alternative modelling technique is proposed in place of the well 
known modal reduction method for mechanical system modelling. The 
method, called quasi-modal reduction, belongs to the category of mode 
synthesis methods and represents a special way of substructuring. 

Its main advantage is the adaptability of the reduced mechanical model to 
varying boundary conditions, as they are often encountered in control 
design for mechatronics systems. A mass-spring model of the reduced 
mechanical system can be derived for flexible mechanical systems. 

As an application example, a possible control layout method, a Luenberger 
observer modified for mechanical vibrational systems, is indicated. 

1. Introduction 

The quasi-modal method will be presented with an example of a flexible 
rotor system supported by a contact-free active electromagnetic bearing. 
The method is suited for modelling and control layout of a quite general 
class of mechanical vibrational systems. 

For this purpose, the FEM equations commonly used for vibration 
simulations must be Simplified. The major drawback of the modal method 
is the inaccuracy of the results for varying boundary conditions, as the 
mode shapes depend themselves on a certain boundary condition. The 
controller in the process of being designed determines these boundary 
conditions and hence the mode shapes. 

The method proposed here uses two types of modes independent of the 
actual boundary conditions: The modes for constrained (Le. fixed) 
boundary conditions are combined with deflection modes generated by 
unit inputs at the boundary conditions. 
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2. The Quasi-Modal Method Demonstrated with a Simple Example 

2.1 FEM-Model and Equations of Motion 

A simple flexible rotor is supported by an ideal hinge and a magnetic 
bearing as shown in Fig. 1: 
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Fig. 1: Flexible rotor example. The shaft vibration is measured with a gap 
sensor placed at the magnetic bearing (collocation). The FEM-model uses 
the 10 shaft elements shown. This 40-degrees-of-freedom model will be 
used as the reference model. 

The equations of motion are derived from the finite element model. The 
complex notation z = x + iy (with the radial directions x and yl is applied. 
as usual in rotor dynamics. 

The displacement vector z is divided into "external" displacements z2 and 
"internal" displacements zl' "External" degrees of freedom are at bearing 
and sensor locations, "internal" ones are not accessible. The equations of 
motion can then be represented as follows: 

( 1 ) 

with the diagonal mass matrix, the stiffness matrix structured as shown 
and the bearing force f(t). The example, simple as it is, contains the 
important features of an actual flexible mechanical system. The coordinale 
z2 acts as a "window" giving access to the mechanical system (Fig. 2) : 

Flexible Mechanical System 
• Robot Arm • Space Structure 
• Flexible Rotor • Head Positioning 
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Mechanism 
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including Actuator 
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Fig. 2: The measured mechanical variables z2 and the actuator forces f(t) 
act like an access "window" to a mechanical system 
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The FEM program used for the reference model is the I-IIROT-package 
/1/ based on the stiffness matrix method. For an actual machine rotor. the 
number of degrees of freedom of the FEM-model often becomes so large. 
that it is not suitable even for advanced control layout methods. 
Therefore. a reasonably reduced model is sought. which still accurately 
describes the first few vibration modes. 

2.2 Modal Reduction 

The well known modal reduction method is based on mode shapes. The 
mode shapes depend on the reaction force f(t). This reaction force on the 
right hand side of equation (1) is replaced by a pure stiffness Kb in the 
bearing, as produced e.g. from displacement feedback: 

(2 ) 

This yields a homogeneous conservative equation. The eigenfrequencies 
(Fig.3) are computed in function of bearing stiffness Kb. For modal 
decomposition, a fixed and realistic value of Kb is selected, e.g. 30 
DN/mm. The number of corresponding mode shapes Vi is truncated 
arbitrarily. The transformation for the first three modes is: 

[Zl] = ±[Vi1]Si z2 i=l V i2 (3) 
with the modal coordinates Si and the mode shape vectors Vi structured 
as the z-vectors in equation (1) . The modal equations of motion are: 
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Fig. 3 Eigenfrequencies of the FEM model and modal reduced system of 
the rotor example in function of bearing stiffness Kb with the limit cases 
for free and fixed boundary condition for small resp. large Kb . 
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Numerical values for the example of Fig. 1 are: 

[13.5] 
m~ = 7.6 , 

0.3 
[ 15] * * 2 [.47] (OJ = 58 Hz where k j = mj (OJ and Rb = .8 

201 .23 

In fig. 3. the eigenfrequencies of this reduced model are plotted in 
function of the bearing stiffness. as was done for the FEM reference 
model. There is exact agreement only for the selected value of the bearing 
stiffness. The large deviations (specially of the first mode) are an incentive 
to look for a more suitable reduction method than modal truncation. 

2.3 Quasi-modal Reduction 

In analogy to mode synthesis /2/ and in accordance with our earlier publi­
cations /3/. a different reduction matrix is proposed here. The aim is a 
reduced model. that can be used for various bearing characteristics. 
Thercfore. the method should be independent of boundary conditions 
(stiffness or damping) at the actuators. i.e. from controller parameters. 
This is achieved by separating the rotor (inner system) from the bearing 
to be designed (outer system.). 

The inner system is characterized by the mode shapes with fixed 
boundary conditions. as shown in Fig. 4a. These modes. independent of 
the bearing parameters. are called <l>i . 

For the connection with the outside. i.e. to provide access to the relevant 
bearing variables (displacement and force)' mode shapes obtained from 
unit force displacement at the bearing have to be used. The input- and 
output matrices then contain only ones (at the bearings) and zeros 
(elsewhere). These modes are called 0i' For our example with only one 
variable z2. there is only one o-mode. the rigid-body mode of Fig. 4b. equal 
to the free boundary condition first mode. 
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Fig. 4a Inner system mode shapes Fig. 4b Deflection mode shape 
(only two shown). eigenfrequ. (Opi 
Fig. 4 Mode shapes for the quasimodal transformation. 

The transformation matrix is analogous to the modal method. but now 
using the <1>- and o-modes. A reduced system of 3rd order is obtained by 
using the o-mode and two <I>-modes in this way: 

(4 ) 
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In opposite to the modal reduction. physical bearing displacements z2 

remain in the variable vector of the reduced system. Thus. the controller 
is easily connected to the mechanical system. The quasi-modal reduced 
system has the following general structure: 

The system reduced to 3rd order is: 

* _ [16.7 0 ~6.2l 
where M - . 8.08 4.8 

sym . 19.6 

* * 2 k· = m· ro . 
1 1 IX 

2 2 
ro p1 = 22Hl ro p2 = 126Hl 

The obtained reduced matrices are not diagonal. Due to the orthogonality 
of the (f)-modes. however. they are partially diagonal. Due to the simple 
structure of the input- (and output-) matrix. the bearing stiffness can 
easily be included or excluded in matrix K*. This is an advantage over the 
modal transformation. 

The most important advantage of the quasi-modal reduction is the good 
agreement of the eigenvalues of the reduced system and FEM-model for 
the full range of the stiffness Kb (fig.5) . The agreement is best for the 
lowest modes. as seen clearly when comparing fig. 3 and fig. 5. 
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Fig. 5 Eigenfrequencies of the FEM model and quasi-modal reduced 
system of the rotor example in function of bearing stiffness Kb with the 
limit cases for free and fixed boundary condition for small resp. large Kb . 
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The same advantage of better accuracy of the low modes is also present 
for the modal damping ratios in function of bearing damping (i.e. velocity 
feedback). This is shown in fig. 6: 
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Fig. 6 Modal damping of the FEM model and the two reduced systems in 
function ofbearlng damping (and constant stiffness Kb = 30 DNjmm). The 
damping ratio saturation, important for bearing controller design, is 
present in the FEM model and the quasi-modal reduced system, but not 
in the modal reduced one. 

The superior accuracy of the quasi-modal reduced system in function of 
widely varying bearing parameters is due to the use of the combination of 
$-modes and o-modes. 

3. Equivalent Quasi-modal System 

3.1 Why the equivalent transformation? 

The quasi-modal reduced system as. presented in the previous chapter is 
characterized by a non-diagonal mass matrix, i.e. mass coupling, and a 
diagonal stiffness matrix. In some cases, a physically better 
understandable structure with stiffness coupling and diagonal mass-matrix 
is preferred. 

The displacement vector of the quasi-modal system contains the time­
variable weighting values Si for the bending modes. These variables must 
be interpreted as relative displacements. Absolute displacements z*i are 
introduced for each bending mode: 

(5) 

A diagonal mass matrix is obtained, by applying this transformation to the 
quasi-modal system and defining the constants ai as: ai = mci j m*i . 

The structure of the transformed system (shown only for third order) is: 
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(6) 

This system can be interpreted directly in the physical mass-spring 
system shown in fig. 7, along with a summary of the calculation procedure. 

Coupling factor 

Equivalent mass 

a.= mcj = cPjlMo 
I mj' cPjlMcPj 

meQj= aj2mt 

Equivalent residual mass 

* Equivalent Reduced Model 

Fig. 7 Equivalent quasi-modal reduced system and its physical interpreta­
tion.(only two bending modes shown) 

3.2 Example of a model with two bearings 

In this discussion, a most simple example has been used. It is however a 
quite general procedure. not restricted to collocation or only one sensor­
actuator. A slightly more general example, with two bearings and three 
bending modes in the reduced model (5 degrees of freedom per radial 
direction), is shown in fig. 8 and fig. 9 . A gyroscopic matrix can also easily 
be included. 

(; FI,."I, .,'" 

Fig. 8 Example of a rotor with two radial bearings and sensors. 
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Fig.9 Equivalent reduced model for the rotor with two bearings of fig.S. 
and five degrees of freedom per radial direction. 

4. Transfer Function 

The quasi-modal reduced system can be represented in form of a transfer 
function relating bearing-force as input variable with bearing 
displacement as output variable. This is shown in fig. 10 for the simple 
rotor example of fig. 1 and the corresponding reduced model. 

f 
Magnetic 

Force 
Fig.10 Block diagram of the transfer function or'the equivalent quasi­
modal reduced system for the example of fig. 1 and 7 . It is based on 
equations (6) ; the variable s is the Laplace domain variable. 

The block diagram of fig. 10 can be reduced to the follOwing transfer 
function. using the parameter definitions given with equ. (6) and fig. 7: 

where 

(7) 

rofl and rof2 are natural frequencies of the system with free 
boundaries (no actuators) 
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meqo is the equivalent mass for the main rigid body 

Olp 1 and Olp2 are natural frequencies of the inner system 
restricted by the pin boundaries, 

Note that this transfer function reflects the correct behavior of the 
eigenfrequencies when the bearing stiffness moves from free to pinned 
boundary condition. 

5. Luenberger Observer Based Bearing control 

This control scheme basically consists of state-feedback combined with a 
model of the mechanical system used to estimate ("observer") the un­
measured state variables in real-time. The description given in control 
theory textbooks is usually in state-base description. Here, the equations 
of motion notation is used in order to provide some additional physical 
insight into the observer dynamics. A complete system is shown in fig. 11: 

Rotor-Bearing System: FEM Model 

M Z + in Cg Z + K Z = Rbf 

Full-order Observer: Reduced Model 
M'W+ M'GcRs'W+( K' +G kRs')W = M' GCZb+G kZb+ Rb'f 
where: no gyroscopic effect 

: M', K', Rb' & Rs' are of the model 

State Feedback Gains 

f=-[Fc , Fkl[~~] 
Error Function: M'e+M'GcRs'e+(K' +GkRs')e=Q 

Fig. 11 Closed-loop mechanical system with observer-based state 
feedback. The observer dynamics is determined by matrices Gc and Gk 
which can be interpreted as stiffness and damping respectively 

6. Conclusion 

The proposed quasi-modal reduction method overcomes some clear 
disadvantages of the modal truncation reduction method, namely its 
dependence on boundary conditions. 

The higher effectiveness, accuracy and easier physical interpretation of 
the quasi~modal method are demonstrated and are now being tested for 
the control layout of vibrational systems like active magnetic bearing 
support of elastic structures. 
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