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3umrnary 

An effective measurement and identification technique of the 
stability of active magnetic bearing systems is introduced. 
Frequency response is reduced into an open-loop transfer 
function and displayed as the Nyquist diagram. This shows the 
stability of the syste~ both qualitatively and quantitatively. 
This technique is applied both for the axial direction, and for 
the radial direction with a strong gyroscopic effect. Measured 
Nyquist diagrams along the radial direction clearly show the 
divergence of eigenvalues caused by gyroscopic effect. A guide 
to optimize the system is indicated for the safe high speed 
rotation of the machine. 

1. INTRODUCTION 

The basic design of the control circuit of active magnetic 

bearing systems is simple: the main purpose is to overcome the 

negati ve s ti ffness of the rotor and afford an appropri ate 

damping. In the case of a single degree of freedom (DOF) system, 

it is easily realized by PID control or phase-lead compensation. 

When a multi-DOF system has to be treated, it is described by 

state variable equations and techniques of either pole 

assignment or optimal regulator can be used. 

However, actual tests often reveal the difference of the 

system characteristics with those of the design condition. It 

is usually worse than the designed one and sometimes the system 

becomes unstable. The causes of the system deterioration can be 

considered as frequency characteristics of the sensors, power 

amplifiers and control coils, incompletion of the compensation 

circui t, non-linearity of the magnetic attractive force 

characteristic, mechanical flexibility of the rotor, etc. 
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'I'he most important "performance" of a control system is the 

stability. It is expressed by complex eigenvalues. A more 

elaborate model of the mechanical and electrical system than 

that of the design can be constructed to get complex eigenvalues 

closer to real values. However, it is difficult to model the 

frequency characteristic of every component accurately. Complex 

eigenvalues cannot be measured directly, but the performance can 

be measuered in the form of Nyquist or Bode diagrams. In order 

to inves tiga te the ac tual sys tern perforlilance, impul se, step, or 

frequency response tests are often performed (1) (2) (3) and data 

are obtained in time or frequency domain. The obtained data arc 

that of closed-loop and usually it is not easy to grasp the 

total system and get a good prospect to improve it adJusting 

parameters of the compensation circuit. 

In this paper, an effective technique is introduced which 

measures and identifies the actual control system and directly 

shows the stability of the system as the Nyquist diagram. 

2. EXPERIMENTAL APPARATUS 

Fig.1 shows the vertical experimental apparatus of five­

axis active control. A large hollow cylinder is connected to the 

top of a shaft and this causes a great gyroscopic effect. The 

rotor mass is about 3.4 Kg and the design rotational speed is 

30,000 rpm. This is an elastic rotor with the first bending mode 

of 345 Hz. Radial displacement sensors of eddy current type are 

installed adjacent to radial coils. Sensor signals are input to 

analogue compensators and the outputs are sent to analogue power 

amplifiers of current feed-back type which energize control 

coils with currents proportional to the input signal up to a 

certain frequency range. A coordinate system with the origin at 

the center of the rotor mass is shown in Fig.2. 

3. CONTROL SYSTEM OF AXIAL DIRECTION 

Fig.3 is a block diagram of the control system and the 

measuring system of the axial direction, which is a single DOF 
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system independent of multi-DOFs of radial directions. GR and Gc 

are the transfer functions of the rotor and the compensation 

circuit respectively, ks the sensitivity of the displacement 

sensor, RpA the equivalent resistance of the power amplifier, 

and ki the current stiffness of the control coils. A test signal 

e t is added to the displacement signal e ~ and these signals are 

input to the FFT analyzer to obtain a closed-loop transfer 

function which is expressed as 

G C l - e z / e t = - k s G R k i / R P·A· G c ( e z + e t )/ e t 

where e~ and et are assumed to be Laplace transformed. 

The open-loop transfer function of the system is 

Therefore G CL and GOL have the following relation. 

GOl =-GCl/(t+GCl ) 

'I'he analyzed result of G CL. is transferred from FFT to the 

personal computer and the open-loop transfer function GOL. is 

calculated using equation (1). This is displayed in a complex 

plane as a Nyquist diagram with frequency as a parameter. 

Stability is inspected by the turning mode of the curve around 

the point (-1,0). 

Now GOL. is proportional to Gc, the compensator. Therefore, 

when the stability of the system is not sufficient and the gain 

and the phase of Gc has to be modified, it can be done more 

easily using the Nyquist diagram of GOL rather than using the 

closed-loop GeL. which is not directly proportional to Gc. 

Some examples of measured Nyquist diagrams are shown in 

Fig.4. Frequencies in Hz are indicated on the curves. Curves 

No.1 and 2 represent designed PD (proportional and differential) 

gains but with and without I(integral) action respectively. Both 

curves turn around the point (-1,0) looking to the left, so the 

system is stable with phase margins about 18 to 20 degrees. 

The initial part (near DC) of curve No.1 extends greatly upward 

and indicates enlarged static stiffness due to integral action. 
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Howevc: [', the phase margin is about two degrees less than the 

non-integral curve of No.2. The basic characteristics of the 

curve has been explained in 8). 
In order to express the system stability directly, the 

frequency and damping ratio of the eigenvalues is identified as 

follows. The components of the system are approximated simply 

as: 

GR(S)= l/(m s 2_ kd) 

G c (S) = k p + k 0 s + k II S 

where s represents Laplace operator, m the rotor mass, and kd 

the displacement stiffness. A rigid rotor and an ideal PID 

control with gains kp ,kl and ko respectively are assumed. The 

open-loop lrunsfer [unction is then expressed as: 

Go L (S) = k. k i I R PI'!' (k p + k D S + k II s )/Cm s 2 - k d) 

Let s~jw, then G OL (jw) approximates the measured diagrams 

in Fig.4. A curve-fitting least square method was used to 

identify the eigen-frequency and the damping ratio which is lead 

from the characteristic equation l+GoL =O. TABLE 1 summarizes 

measured and identified results. The damping ratio of the 

original setting (No.1) is less than expected. Therefore the 

differential gain was almost doubled (No.3) and a satisfactory 

value for the damping ratio was obtained. A larger value of the 

differential gain brings noise and high frequency oscillation. 

The optimization of the system can be achieved through a trade­

off of these effects using Nyquist diagrams. 

4.CONTROL SYSTEM OF RADIAL DIRECTION 

The equation of motion for a rigid rotor can be stated by 

four radial DOFs, x, y, Ox, and ey as follows: 

mx = kdX + k I i x 

my = kdY + ki y 

J rex + J.wR8 y = k d t 8 x + kit 
( 2) 

t x 

Jre y - J.wR8x=kdt8 y + kit t Y 
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where Jr and Ja are the moment of inertia about the radial and 

axial directions respectively, UJR the angular rotational speed, 

and i the control current. 

The equations above indicates that the translations x and y 

are essentially independent and can be treated as single DOFs 

as well as z. On the other hand, rotational motion Ox and 9y 

are coupled with each other by the gyroscopic terms when the 

rotur is roLating. Thus the rotational motion is treated as 

one of two DOFs as shown by a block diagram of Fig.5. Here two 

kinds of compensation circuits are used : G Me , main 

cornp8nsation and G xc, cross compensation. Ja WI>. s represent::> 

gyroscopic terms. 

Although the control system now seems much more 

complicated, the same simple mea::>uring technique can be appUed 

wi th a test signal e t input to 91 system, and the following 

transfer functions concerning ey are obtained: 

where 

G - eBy __ GaLa / [1+ { GR(Gxc'+JaWRS)} 2] 
CL= et- l+GoLa 1+ GOLa . 

( ) / [I GR2(Gxc'+J .WR S )2] 
GOl=-GCL/I+GCL =GOl0 + 1+Gol0 

The 

GOla =k.kJRpA·GRGMC 

Gxe' =kski/RpA·Gxe 

second term of the denominator represents 

( 3) 

(4 ) 

the 

gyroscopic and cross compensation effect. Eq.(3) and (4) shows 

that, on the contrary to the simple case of axial direction, the 

control characteristics of the radial rotational motion changes 

greatly as the rotational speed of the rotor increases. This is 

clearly indicated by tIle measured data of Fig.5. In thi::; case, 

PI control was used in the cross compensation G xc The lower 

frequency range of the diagram::> indicates the effect of P 

conLr'ol of G xc which stabilizes precession, the lower 

eigenvalue diverged by the gyroscopic effect. At higher 

frequency range over 100 Hz the curve approaches (-1,0) as 

the rotational speed increases, indicating the decrease of 

stability of nutation, the higher branch of the eigenvalue. 

This inclination of instability is caused by the phase lag 

of the main compensalion circuit due to various kinds of filters 
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used. Fig.7 shows simulated curves corresponding to Fig.5, with 

low pass filters included in G Me in eq.(4). The stabilization 

of precession and the destabilization of nutation are 

expressed. D control of the cross compensation must be uSeful 

for stabilizing nutation. But, in this case, it causes the onset 

of the oscillation of higher bending mode. Therefore a notch 

filter in the main compensation was used with a successful 

resul t shown in Fig. 8, where f N is the center frequency of the 

notch filter and kN is the proportion of full filtering. 

The eigenvalues of the bending mode are also diverged by 

the gyroscopic effect. Fig.6 shows the divergence of the first 

bending mode, which is originally located at 345 Hz, and 

diverges into 320 Hz and 410 Hz at 10,000 rpm. Care should be 

taken if these branched eigenvalues approach instability. 

The measuring technique stated above guarantees a reliable 

observation of the system stability as the rotational speed 

increases, and ensures a safe high-speed rotation of the 

machine. Realistically sui table vari.'lble-gain control method 

will be realized using the result of optimization obtained. For 

elastic rotors this measuring technique could be expanded into a 

more precise form considering the variation of the transfer 

function with space and utilizing more information from 

additional displacement sensors. 

5. CUNCLUSION 

(1) A simple and effective measuring technique was introduced 

which identifies the actual performance of the control system 

of active magnetic bearing systems and enables its 

optimization. The result is displayed as a Nyquist diagram. 

(2) The method is applicable not only for a simple case of 

single DOF but also for multi DOFs having coupled terms such 

as gyroscopic terms. The measured Nyquist 

indicates the gyroscopic effect which 

diagram 

diverges 

clearly 

system 

eigenvalues of both the rigid mode and of the bending mode. 
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Fig.4 Measured Nyquist diagram 
(axial direction) 

No. 1 2 3 

Measured 
Phase margin 18° 20 30 

Identified 
eigenfrequency 42Hz 42 37 
damping ratio 0.24 0.26 0.58 

TABLE 1 Identification of 
eigenvalues 

Fig.5 Control system of radial 
rotational motion 
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Fig.8 Effect of notch filter 
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