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Summarv 

A theoret ical analys is of the dynamic response of a rotor supported in 
magnetic bearings is presented. This predicted response is compared with 
the experimental response of a small rotor subjected to an impulse loading 
produced by a spring loaded solenoid. Theoretical and experimenta.l 
results arc compared for various stiffness and damping settings for 
magnetic bearings. 

Nomellclature 

C damping matrix 
f exogeneous force 
G control transfer function 
K stiffness matrix 
Kp proportional gain 
K. cUI'rent stiffness 

1 

Introduction 

Kd rate (derivative) gain 
Kx position stiffness 
M mass matrix 
X Laplace of position 
T time constant 
a,l] transfer function coefficient 

The stability of rotors may be affected significantly by use of beariligs 
having stifCnesses that are unequal in mutually perpendicular directions, 
the theory of which was presented so eloquently by Smith [1J. Credance to 
the work by Smith came from experiments reported in 1924 by Newkirk [2] 
who suggested that the unsymmetrical flexibility of the bearings was the 
essential feature inducing stability even in the absence of damping in the 
bearings. At the time of this work, no convenient methods were available 
to implement controllahle variations in the stiffness of it bearing ill tliO 
orthogonal directions although bearing supports could be designed to 
produce unequal, but not adjustable bearing stiffnesscs. 

* This work was supported ill part by the U.S. Army Research Office, NASA 
Lewis RcseaJ~h Center, and SUlldstrand Corporation. 
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The use of magnetic bcarings has includcd appl ications to vcry largc 

machillcry including high- speed multistage compres::;on; [3J. Con::;iderablc 

details of the controls for magnetic bearings are now available for design 

alld for proper applications [4J. Innumerah 1 e patents have heen f i 1 ed and 

countless papcrs rcported in the field of magnctic bcarings, SOIllC 200 of 

which were summarized by lIumphris [5J in 1985. The reported works have 

pnlhahly doubled since that time as thc potential for magnetic heal·illgs 

has become hetter understood and accepted. 

The option now exists through the implementation of digital controls [6J 
to dC'sigll "smart" ma.gnetic bearings to incorporate the findings reported 

decades ago. By changing the stiffnesses of the hearings in two mutually 

perpendicular directions as the speeds are traversed, rotors can be made 

more stable [7J. Simultaneously, varying the stiffnesses of magnetic 

bearings as a rotor speed changes offers the means to avoid running 

through any critical speeds as the "critical" speeds of the system will 

not be fixed values, but variable quantities dependent upon the controlled 

bearing stiffness and damping values. 

As magnet ic bearings become more commonplace, questions regarding som(~ 

behavior details about them seem gel~ane. This paper addresses one such 

detail, namely, "Can the dynamic response of a rotor in magnetic bearings 

be predicted theoretically when the rotor is subjected to an impulsive 

loading'?" This is a first step in predicting the behavior of a rotor tha.t 

suffers a sudden upset such as the loss of a blade in a compressor. 

ExperilJl('lltal Se(,- Up 

The arrangement used for the experimental impact testing is shown in 

Figure 1. The 12.7 mm (0.5 inch) diameter shaft is supported at each end 

by a magnet. ic bearing cons isti ng of four electromagnets uniforml y 

distributed radially about the shaft. Details of the controls and 

physical properties of this system have been previously reported [SJ. l~e 

bearing spa.n is 508 llJlll (20 in.) and a 0.8 Kg (1.8 lb) disk is located at 

the shaft center. A rubber coupling joins the rotor Lo a variable speed 

electric motor. Coupling properties are estimated at 17500 N/m stiffness 

and 8.S0 N- sec/m damping. Eddy tUlTent position sensors are located 

vertically and horizontally at each cnd, displaced 30 llJlll from the magnetic 

bearing disks. Signals from these sensors arc used, with the control 
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electronics, to maintain the shaft in support and are also used as the 

transducers for observing the effects or results for this impact study. 

A simple spring loaded solenoid, taken from an ordinary door-bell chime, 

is Ilsed as the impact mechanism. An electrolytic capacitor is initially 

charged to a given voltage. 
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Figure 1. Experimental Schematic Iliagram with Spring-Loaded Solenoid 

When the push button switch is actuated, the stored charge is dumped 

thl'Ough the spring loaded solenoid coil, causing the plunger to impact on 

the desired point of Lhe shaft. The force of the impact is accurately 

controlled by varying the power supply voltage applied to the capacitor. 

Very rcpcatablc impacts arc obtained, as observed by a d igi tal signal 

analyzer used to capture the transient behavior. 

Stat(' Sp;)('(' Rotol'/Ilcari ng Modn] \}nvelopm!'lIt 

To obtain a description of a rotor supported in magnetic bearings adequate 

[or stabillty analysis and transient response simulation, a dctailed lIIodcl 

is rcquircd, Prcviollsly rcportcd works have cithcr assumcd a simple 

second order plant model [7J or have examined higher order plant modcls 

using state space techniques, but neglected the high frequency limitations 

(poles) of the controller [9J. In this development, a g(~Jlcral methodology 

is outlined for constructing a model which includes not ouly higher order 

plant dynamics and controller bandwidth limitations, but also permits 
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accurate modeling of sensor/actuator co11 ocat ion error. Thi s last effect 

has been discussed fairly widely in the literature since 1977 [9,10]. 

Assuming that an undamped structure model for the rotor has been obtained 

of the form 

M~ + K~ = f (1) 

and that any mechanical bearings, seals, and gyroscopic effects can be 

modeled by linear stiffness and dampiug matrices Kb and Cb, respectively, 

the matrix differential equation can be expanded to the state space form 

(2) 

Magnet ic [>cariugs may be described by a linearh-;ed force law relaLilig the 

bearing force to displacement of the journal and symmetric perturbation of 

the bearing coil currents [8]: 
f = - K x - K. i (3) a x a 1 

The perturbat ion current, i, is related to the motion of nodes of the 

rotor by the linear cOlltrol law 

I = G(s)Xs (1) 

The bearing force is applied to nodea while the sensor providing the 

feedback control senses the pbsition of uode. If node and node are s a R 

differenL (a.s they generally arc), then collocation error is introduced. 

To incorporate the bearing description of eQuation (3) into the state 

spa.ce description, the freQuency domain equation governing the 

perturbation curreut must be transformed hack to the time domain. Thus, 

. (n) !l • ( n- 1) !l . (1) /). _ (III) (1) 
1 +/'n-l1 + ... +1'1 1 + lUI-fills + ... +1t1Xs +ItOxs (5) 

in wh ich the superscript (i) denotes the i th time deri vati ve and the 

coefficients ll'i and /3 i are derived from Lhe tmnsfer fUllcLion G(s): 

G (s) (6) n a n-l a a s + ~n-ls + ... + ~ls + ~O 
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In general, the numerator 0 f (] (s) wi 11 be of order higher than one, 

implying that equation (5) will involve higher derivatives of Xs than are 

available in the state vector. This problem is circumvented as G(s) can 

always be expanded, via partial fraction expansion, into a slim of transfer 

functiolls all of which are zero or first order in the nUllIerator. III this 

manner, a bearing having a second or higher order transfer function 

llumerator can be split into several separate bearings act ing at the same 

point, each having first or zero order transfel' function numerators, 

So equation (5) can, without loss of generality, be written as: 

(7) 

Transforming to state space form, 

Xs 0 1 xs 

x~1) * * (1) 
d - - - - xs 

at i = I 0 1 i 
. (1) 0 0 i(l) 1 

(8) 

I 

:-110 -111 
1 I 

i (n- 1) 11'0 11'1 ... - I1n- 1 i (n- 1 ) 
I 

Equation (8) is incorporated into equation 

vector with the required current terms: 

(1) by augment ing the state 

~ 0 I ~ 

x 

1 

~ {{_ll j (9) 
. (1) 
1 

i (n- 1 ) 

Finally, equation (3) forms a feedback control law for the force term in 

equation (0): 

f [ 0··0 - Kx O· ·0 

x 
- 1 -

. (1) 
1 

(10) 
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An example will illustrate the assembly process. The dynamics of an 

axisymmetric nongyroscopic three mass rotor model is described by: 

[ 200] [2-:31] o 4 0 i + -3 5 -2 ~ = I 
o 0 1 1 -2 1 

(11 ) 

There arc two magnetic hearings, acting on stations 1 and 3. The bcarin)!; 

act i ng on staUon I has no co llocation elTor, wh i 1 e that acting on stat ion 

:3 senses station 2. They are described by: 

f\ = 5xl- 2i\, fa= 3x3 - 3h (12) 

The transfer functions relating the perturbation currents to the rotor 

1Il0tion arc 

G1 (s) ( 13) 

After expanding to state space form, incorporating the bearing transfer 

functions, and implementing the feedhack of equation (10), the system 

diffcrcnLial equaL ion becomes 

Xl 1 Xl 
x 1 x2 x 2 

I I ~3- .-: 3- .- l.fi -
1 ~ 5 

- - ~ 51 - - -
I 
- -1 • Xl 

.75 -1.25 .5 1 I 
):2 

Xl 
d x2 I . 

- 1 2 2 I -3 
. 

(Jt~ _x3 I _x3 (14 ) - - - - - 1- -
1 

~ 

11 . I 11 . 
., 1 1 I 1 I .. 11 
J 1- .- 2 .1 I -3 -5 -4 i 

- 1- - - 1 i2 . ]2 . 
i2 5 -2 -6 i2 

Mod£'l of Laboratory Apparatus 

For the purposes of this investigation, a tcn lIIass single pla.n£' lIIodel was 

used. The coupling is modeled as a simple hearing. All rotational 

degrees of freedom were removed from the model using static condensation. 

Each magnetic bearing has eight poles. The stators are constructed of 

"soft" silicon magnet iron and arc unlaminated. Hysteresis losses appear, 

on the basis of static measurements, to be substantial and are modeled as 

providing; an added lag time constant of 1.0 msec in the control loop. The 

1.0 msec value was determined by comparing the experimentally determined 

stab i 1 i ty threshold with that predicted by the mathematical lIlodel 
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corresponding to Kp = 2.5 and Kd = 2.85 with the motor conpling 

disconnected. This linear model of a highly nonlinear effect appears to 

be adequate for small motions of the shaft, but may introduce substant ial 

error for large motions. The bearing coefficients are estimated 

(including losses due to leakage and fringing) as: 

K. = 206 N/A 
1 

(15) 

The control algorithm employed is simple proportional-derivative (I'D) 

feedback. The actual controllers used are adjustable, lmving a transfer 

function defined by 

al K s2+(azK +a3Kd)s+K 
Gc(s) = 0.05 (Tl~+1)(TZS~1)(T3S+1)P (16) 

The various coefficients are reported in Table 1. The transfer functiOIls 

of the controllers have been carefully documented in earlier works on the 

basis of experimenta1 measurement [7,11). Position sensing is 

accomplished with eddy current probes which have a sensing gain of 7900 
VIm and a time constant of 56 Jlsec. The output of the controller drives a 

transconductance ampl i fier wlli ch converts the control voltage to the 

required current to drive the bearing LOils. The amplifier has ;1 

transconductance of 0.5 A/V and a pair of poles with time constant of :220 

jlsec due to a well damped tank circuit in the output section required for 

amp L i f ier stabi li ty. 

Combining the transfer functions of the probe, controller, and amplifier, 

,In<l adding the pole which models the actua.tor hysteresis, tli(' ovcrall 

control transfer function is found to be 

alK S2 + (azK + a3Kd)s + K 
G(s) = 107.5 (TlS+l)(T28+1)(~:p:l+l)(T1S~1)(T5s+1)(T(J+l)(T7S+1) (17) 

Tah 1 n 1. Contro11er Confficients 

Symhol Value Symhol Va111e 

a1 2.0 x 10 -8 sec2 T3 47 ILsec 

a2 0.320 msec TLJ 56 Ilsec 

a;l 2.20 lIIsec T" 220 Ilsec 
,) 

Tj 220 llsec TG 220 /J,sec 

T2 100 Ilsec T7 1.0 lIIsnc 
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Impulse ResponscSilllula.tion 

There arc several methods for silliulating the impulse respOIlS(~ of a. system 

from a state space model. Among these arc numerica.l techniques SUdl as 

Runge Kutta or I\uler tillle integration [12J, direct analytic solutions such 

as Lukes I AIlC algor i thlll [1:IJ, and frequency domlt i Il techn i Clues based on the 

Laplace transform [11]. In this investigation, the direct analytic 

a.pproach was adopted both for its speed in obtaining silllu\ations and for 

the ease with which an impulse 0[" finite duration can be represented. The 

actual time history of the impulse appl ied by theexperilllcntal apparatus 

wa.s unavailable, hut a 1.0 IIlSC'C imjlube was modeled. 

Conclusions 

Figure 2 shows the measured experimental a.nd the pred icted theoretical 

response of the rotor a.t tht' outboard sensor subjeeLed to an impulse' 

applied at the outboard end (end opposite motor). These data a.re for 

controller settings, K "2.5 and Kd = 4.5 corresponding to proportional 
p . 

and damping gains of 117 N/IIIIII and 0.79 N-s/mm, respectively. The general 

forms oJ the two curves agree as well as the f uudamental frequencies 

(first three criticals are 2000, 3800, and 5500, experimentally measured 

and 2H)O, 1:150, ilnd 5768 rpm, theoretically predicted). 
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Figure 2. Experimental and 

Calculated Response with Kd " 1.5 
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Figure 3 shows results similar to those of Fig. 2 except with a reduced 
derivative gain of Kd = 3.0. The stability threshold for Kp = 2.5 is Kd ~ 
2.4, so the reduction from 4.5 to 3.0 would be expected to produce 
substantially reduced damping. This is supported by both the experimental 
and simulated results of figure 3 where, again, concurrance of theory and 
experiment is quite good. 

This work illustrates that by having a good description of the control 
circuitry and by making a detailed model of the system, even relatively 
complex transient behavior can be predicted accurately. 
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