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SUMMARY 

In this work we will apply a linear quadratic regulator for the 
controller of the magnetic levitation of a rigid body. A success full 
implementation with a diferentiator to estimate the velocity is 
showed, using a linear and not noisy displacement sensor. Another 
implementation with a pragmatic control policy that worked well 
with a noisy and strongly nonlinear sensor is presented. 

1.9) INTRODUCTIOH 

Robustness is a well-known property of optimal linear 
gain margins of quadratic control (LQR). Guaranteed phase and 

respectively, 60 degrees and -6 dB to infinity 
robustness with this control policy [1], [2]. For a 

x=Ax+Bu, v=Cx 

in which we attempt to minimize the functional 
+CD 

J= f (x'Qx + u'Ru )dt 
9 

is a measure 
system 

of 

<1.1> 

(1.2) 

with Q, R symmetric 
definite matrices, the 
on the initial condition 

and respectively, semi-definite and positive 
steady st.at.e opt.imal solu t.ion doesn't depend 
Xo and it. is of the st.at.e feedback form, 

u(t.)=Fx(t), (1.3) 

where P is the unique solution of the Riccati equation [3]. 
Furt.hermore, controllability of (A,B) ensures st.ability of the 
closed-loop system x=(A+BF)x. 

In this work we will apply a LQR for t.he controller of the 
magnetic levitation of a rigid body, [4], [5], for two cases. In the 
first one we will use a linear displacement sensor, and in the 
second one we will use a noisy and nonlinear sensor. 

2.0) PLANT IDEIHIFICATIOH 

The st.ate variable system representation will depend on the 
knowledge about. t.he magnet.ic act.uator, sensors, power amplifier 
and body weight. In this section, the plant identificat.ion and it.s 
linearization are described. 

2.D Magnetic actuat.or 

The following law will be considered for t.he magnetic 
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actuator 1'orce, 

(2.D 
where, f. force. (1)1) 

I. coil current. (A) 
X, displacement (m) and 
C. magnetic actuator constant. 

The magnetic actuator constant C can be found through 
experimental methods. [6J. analytical methods (in some cases) or by 
1'inite element approach. We used an experimental method. in which 
the current [ is obtained 1'or a constant 1'. at each gap X. Thus, we 

obtained C=2.223£-5 Hmc /A2. 

2.2> Displacement sensors 

!--Ie used an eddy current sensor and an inductive sensor. 
The first one presents a good linearity while the second one is 
highly nonlinear. In the test rig we got the calibration curves (fig. 
l). 

..-----------------, -a- Eddy current 

--- Inductive 

I 

-4+-----~------~----~------~----~ 
o 6 9 12 1~ 

Gap (E-4 rn) 

Fig. 1 Sensors calibration curves 

Eddy current sensor, v=2625X-9.92, 

Inductive sensor, v=-3.32+1.33E4X-1.22E7X 2 +3.87E9X 3 

<2.2.1) 

<2.2.2) 

2.3) Power amplifier 

The power amplifier used 
1're<:juency response. Then. we can 
Ka::9.42 A/V. 

is linear 
describe 

2.4) State variable system representation 

and has 
it as a 

The linearized force around levitation gap is, 

a very 
constant 

flat 
gain 



f= f<Io.Xo) +df I <X-Xo) 
dR X=Xo, 

1=10 

+df I<I-IO) + 
err X=Xo, 

1=10 
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(2.4) 

where Xo and 10 are respectively the levitation gap and levitation 
current. If we write x=X-Xo and i=I-lo, and use (2.D, we get, 

f"'CK k 2-Kxx+Kmi (2.4.1> 

where, Kx =2Cl02 /Xo3 i Km =2CIo/Xo2 ; Kk=Io/Xo. 

Thus, the differencial equation for the system linearized 
around levitation gap is Mx=Kxx-Kmi (M, mass of body). In matricial 

representation (1.1), 

<2.4.2> 

We can change the mechanical state variables by the 
eletrical state variables, 

(2.4.3) 

with Kd= dv I and 
dX X=Xo 

Va, control voltage output. 

In this way. when evaluating the state feedback to get a 
LQR, we have to calculate the gains for displacement and velocity 
signals. 

3.0) CONTROLLER DESIGN, EDDY CURRENT SENSOR CASE 

Choosing Xo=0.35 mm for the levitation gap we obtained the 
following matrices for the system, 

[
8 

A-
5.604E+4 

[ 
9 

B-
-2.0B7E+5 

(3.1> 

It is easy to demonstrate that the system above is 
control able and observable. [5]. 

We evaluated the LQR feedback matrices F for different 
choices of the ponderation matrices Q and R. Through computer 
simulation of the nonlinear system model, we found the best gains. 

Q= [ ~ R= f 1 J, F= f-1.32 ~1.77E-2 j _ (3.2) 

We got a good performance with this choice of F (Fig. 2. 
curve 1>. For that ponderation the levitation was fast and without 
overshoot. The simulation results were very close to those ones we 
got in the test rig, where we used a differentiator to produce a 
velocity estimation. The implemented transfer function and its 
approximation for low frequencies were' 

G (s) = 1.3 2 + __ --"2~ . ."-7~9.:=6"'6:.:E"'8:.:s"__ __ 

s2+11.3E3s+1.58EIB 

'" 1.32+1.77E-2s (3.3) 



132 

3.1) Set-point regulator (SPR) 

In order to obtain greater bearing stiffness around the 
levitation gap, we tried to increase the closed-loop gains using 
another F, but the levitation transient became worse due to growth 
of the overshoot (Fig. 2, curve 2). Overshoot appears because the 
magnetic actuator can't produce repulsive forces to brake the 
body. 

Gap/m I ,0.002 

I 
I 
I 
I 

I 
i 

0 0.1 Time/s 

Fig. 2 - Levitation Transient, Gap(m) X Time (s) 
1) Fll=l.32; 2) Fl1=3.42 3) Fll=3.42 with SPR 

High closed-loop gains usually produce high currents with 
abrupt variation in the levitation transient. I-Ihen magnetic material 
is submited to that flux variation, it becomes magnetized (magnetic 
remnant). This will produce greater overshoot in the test rig than 
that one obtained by computer simulation <where the magnetic 
remnant model is not available>. 

A solution found for this problem was to get slow levitation 
transients with high closed-loop gains. This was possible due to 
robustness of the LtiR during transient levitation and by a slowly 
variable signal which was added to the set-point D.C. voltage for 
gap Xo. This corresponds to the following block diagram' 

[ SPR 

Set-point D.C. 
voltage 

Controller t-----r 
Plant }----l 

Fig. 3 - Set-point regulator (SPR) control block diagram 

The SPR has been used in order to keep the control error 
signal very small during all the levitation transient and 
consequently to produce small body acceleration and coil current, 



133 

even with high closed-loop gains <Fig. 2, curve 3). 

4.0) COHTROLLER DESIGH, INDUCTIUE SENSOR CASE 

In section 3 we presented a controller with a differentiator 
to produce a velocity estimation. This worked well because the Eddy 
current sensor is linear and not noisy. However, the same control 
policy presented a bad performance when using an inductive sensor. 
This is due to the noisy nature of that sensor. Furthermore. the 
inductive sensor is strongly nonlinear <Fig D. 

The controller for this case must be robust (specially due 
to the non-linearity of the sensor) and the closed-loop system 
must have good noise rejection properties. 

The first possible approach is the design of an 
observer-based compensator. considering the closed-loop robustness. 
Transfer function computations will be necessary to determine the 
noise and mechanical disturbance rejection. For final verification, 
the sensor non-linearity will be taken in account in computer 
simulation. 

Considering the differential 
observer-controller topology C7J 
have, 

equations of the system and a 
with a full state observer. we 

BF ] [X] + [B] v(t) + [B] q<t) + [ B] r(t), 
A+GC+BF w B B -6 

y= rC 9J [:] <4.D 

where r(t) is the sensor noise, v(t) is a known input and q(t) is an 
unknown mechanical disturbance. We can use the similarity 
transformation in order to compute the transfer functions, 

BF ] [ I 
A+GC+BF I ~ ] A+BF GC]. 

o A+6C 
(4.2) 

From matrix Ac (4.2) the so called deterministic separation 

property is clear. Indeed, the tringular-block form of (4.2) implies 
that the poles of Ac are the poles of (A+BF) and (A+GC). The 

control ability of (A.B) and the observability of (C,A) ensures 
arbitrary allocation of the poles of (A+GC) and (A+BF). respectively. 
For instance. we can use LQR algorithm to determine the optimal 
feedback F and use the dual system to determine a S' so that 
(A'+C'G') has adequate poles. Unfortunately, this ensures stability 
but there is no guarantee of robustness with observer-based 
controllers L8J, C9T In the new base defined by the similarity 
transformation (4.2) is very easy to compute all the transfer 
functions from v, q and r to x. Moreover, it's clear that the 

controler's transfer function is L(s)=-F(sI-(A+BF+GC»-lG, and the 

plant's transfer function is H(s)=C(sI-A)-lB. So it's not difficult to 
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determine t.he 
and noise and 

open-loop L(s)H(s) (so t.he gain and 
dist.urbance rejection. Then, we can 

design wit.h several choices of F and G, comparing 

phase margins) 
proceed in the 
t.he resul t.s of 

each one. 
For our particular problem. we observed t.hat. the 

robust.ness and noise reject.ion of t.he closed-loop system led t.o 
relatively low gains of t.he controUer. On t.he ot.her hand we 
required t.hat. t.he cont.roller must. levit.at.e t.he body from its st.art. 
posit.ion. which is 1.15 mm dist.ant. from the levit.ation gap 0.35 mm. 
Due t.o t.he non-linearity of t.he sensor and act.uat.or, t.he linearized 
open-loop gain around t.he st.art. posit.ion is many t.imes lower t.han 
t.hat. one around t.he levit.ation gap. In pract.ice, the gain adjust.ment. 
of t.he controller became almost. impossible, because it. must be high 
enough t.o produce a current in the magnetic actuat.or in order to 
levit.at.e t.he body, but. it has to be low enough because of the 
noise and stability restrict.ions. We solved this problem by adding an 

int.egrator t.o t.he system, and then proceeding wit.h a LQR policy. 
The plant. t.o be controlled (2.4.3) was a little bit different. from 
the one in the section 3, and is given by, 

[ 
B 

At= 
S.6E+4 

1 

o ] , [ B ] Bt-
- -1.3E+5 ' Cl=[ :r (4.3) 

We added an integrator in t.he way that a new input. was 
defined. The complete new plant. will be, 

1 

o 
o 

: ]. 
-1 

This corresponds t.o the following block diagram' 

ul r--i H1<s) ~I y 

~J} rK} 1 
u2 

(4.4) 

Fig. 4 - Integrat.or system block diagram - H1<s)=Cl(sI-Al>-IB1 

We added an int.egrator and a gain K to t.he original system, 
defining a new input u2. The exact value of K was determined in a 
t.rial and error fashion. To t.his new system defined by (4.4) we 
evaluate the LQR feedback mat.rices with differents choices of Q, R 
and K in funct.ional (1.2) and in the system (4.4). The main idea was 
t.o have a strong ponderation of the first input ul compared with 
t.he second input u2. This was done in order to have lower gains in 
t.he proport.ional and derivative parts of the cont.roller, but. great. 
gain in the integral part. which will produce high D.C. gain. Wit.h the 
choices, 



the 

13 13 

Q= B [4BO 13.05 0 j. 
optimal 

Fo= [ 

B a 
feedback 

2.31 

-2.74 

0.5 

matrix was found 

1.69E-2 

2.88E-4 

0.187 ]. 

8.27 

R= [ 2:0 
0 ] , 

K=5B. 

to be 

The reader can verify that the matrix Fo with Fo22=B 
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(4.5) 

(4.6) 

will produce the same closed-loop poles. The controller transfer 

function would be L<s)=1.69E-2s-2.31+38.42/(s+8.27). 

The implemented transfer function was, 

where' Lo(s)= -2.08E8(1.69E-2s-2.31> 

s2+5.132E4s+2.B8E8 

and Li(s)= 38.42 

5+8.27 

(4.7) 

The Lo(s) produces an estimation of the proportional and 

derivative part of the control. Its poles were selected by trial and 
error, in order to have robustness and good dynamic response, 
dictated by the closed-loop poles. The Li(s) is the integral part of 

the controller. 
In order to check the closed-loop system behavior. several 

computer simUlations were performed. We check the controller 
performance considering sensor and actuator non-linearities, 
mechanical disturbances and sensor noise. In this way the controller 
(4.7) was found to be a good choice. As an example of simulation. 
we show in the figure 5 a typical levitation curve with the 
set-point regulator. These results . were very close to the 
experiment results . 

0.002 

Gap/m \ 

v------________ ~ 

o 
Time/s 0.04 

Fig. 5 - Levitation Transienb System with integrator 
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5.0) CONCLUSION 

In section 3 we showed that, in some cases, the 
differentia tor is a simple manner to produce a velocity estimation 
and an optimal control can be implemented with good closed-loop 
performace. In section 4, we showed that, in the case of a noisy 
and non-linear sensor, a simple design method was able to produce 
a robust controller. In this case an integrator was added and its 
pole was determined by an LQR algorithm. So we can call the 
controller of section 4 as an "optimal PID control". 

We showed the great influence in controller design of the 
displacement sensors. 
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