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Abstract ─ The main helium circulator is the core 

component of the High Temperature Reactor (HTR). 

Mechanical machining errors and assembly errors can 

cause uneven distribution of rotor mass. When the rotor 

rotates, the unbalanced mass will generate unbalanced 

force which will change the rotor's axis trajectory.  
By coupling the rotor dynamics method and the 

electromagnetic bearing system control theory, the 

motion of the rotor is modeled. Three representative 

unbalanced conditions of the impeller position, the 

bearing position and the centroid position are assumed to 

simulate the unbalance response of the rotor, and the 

influence of changes in the stiffness and damping on the 

unbalance response of the rotor is analyzed by adjusting 

the stiffness and the damping of the rotor. The results  

of the analysis show that the bearings farther from the 

unbalanced position (UBP) have larger rotor displacements 

and bearing loads. Increasing Active Magnetic Bearings 

(AMBs) stiffness and damping will increase the bearing 

load and reduce the response displacement of the rotor. 

Therefore, the stiffness and damping of AMBs must be 

designed by considering the bearing capacity and the 

displacement limit of the rotor. 
 

Index Terms ─ Active magnetic bearing, bearing stiffness 

and damping, coupling dynamic and control methods, 

rigid rotor, unbalance response. 
 

I. MODEL INTRODUCTION 

A. The rotor model 

The main helium circulator model of the HTR is 

shown in Fig. 1. The vertical rotor (red part) is supported 

by two radial electromagnetic bearings (yellow sections). 
Because the first-order bending frequency of the rotor 

exceeds the rated rotation speed of the rotor, the rotor is 

simplified as a rigid rotor and placed in a rectangular 

coordinate system, as shown in Fig. 2, the dynamic 

parameters of the rotor are shown in Table 1. 

In Fig. 2, The notation xa represents the rotor 

displacement in the x direction at bearing A, the notation 

ya represents the rotor displacement in the y direction at 

bearing A, and the notation Fxa represents the bearing 

force applied to the rotor by the bearing A in the x 

direction, the notation Fya represents the bearing force 

applied to the rotor by the bearing A in the y direction, 

as is the case for the bearing B. The notation xc represents 

the displacement of the centroid in the x direction, 

notation yc represents the displacement of the centroid  

in the y direction, and the notation 𝜃𝑥  represents the 

rotation angle of the rotor around the x axis, the notation 

𝜃𝑦 represents the rotation angle of the rotor around the  

y axis. The notation P represents the external load, the 

notation C represents the centroid, the notation l represents 

the force arm of the force from the centroid, and the 

notation Ω represents the rotational speed. 
 

 
 

Fig. 1. The model of HTR. 
 

Table 1: Rotor dynamics parameters 

Parameters Value Unit 

Total mass(m) 4230 kg 

Centroid position Z=1.5 m 

Equatorial moment of inertia 𝐽𝑥 = 𝐽𝑦 2690 kgm2 

Polar moment of inertia 𝐽𝑧 215 kgm2 

Rotor diameter at bearing (D) 0.3 m 

ACES JOURNAL, Vol. 34, No. 4, April 2019

1054-4887 © ACES

Submitted On: June 30, 2018 
Accepted On: October 1, 2018

512



 
 

Fig. 2. The model of rigid rotor. 
 

B. The AMB model 
The design of the radial bearing is shown in Fig. 3. 

It is an 8-poles bearing. The design parameters of the 

bearing are shown in Table 2. 
 

 
 

Fig. 3. The model of AMB. 
 

Table 2: Design parameters of AMBs 

Parameters Value Unit 

AMB-A position Z=0.8 m 

AMB-B position Z=2.6 m 

AMB-A arm(𝑙𝑎) 0.7 m 

AMB-A arm(𝑙𝑏) 1.1 m 

Magnetic permeability(𝜇0) 4π/107 H/m 

Number of coil turns(N) 30 - 

Bearing thickness(B) 0.3 m 

Single pole width(C) 0.06 m 

Bias current(𝐼0) 20 A 

AMB Gap (𝑔0) 0.001 m 

Pole projected area S1=S2 0.243 𝑚2  

Bearing projected area 𝐴𝑗  0.09 𝑚2  

Radio of projected area 𝑟𝑝  0.37 - 

 

In Fig. 3, the notations S1 and S2 represent the 

projected area of the magnetic pole 1 and the magnetic 

pole 2 on the rotor in the y-plane. The notation  𝐴𝑗 

represent the projected area of the magnetic bearing on 

the rotor in the y-plane, 𝐴𝑗 = 𝐵 × 𝐷, and the notation 𝑟𝑝 

is the ratio of the projected area of magnetic pole to the 

projected area of the bearing, where  𝑟𝑝 =
𝑆1+𝑆2

𝐵×𝐷
. 

 

C. Rotor unbalanced load 
In the ISO 1940-1 standard [1], there is a double 

logarithmic linear relationship between the maximum 

permissible radial imbalance 𝑒𝑝𝑒𝑟（g.mm/kg） and the 

maximum rotation speed 𝑛𝑚𝑎𝑥 (r/min) for the same 

unbalance level: 

log10(𝑒𝑝𝑒𝑟) = 𝐴 × log10(𝑛𝑚𝑎𝑥) + 𝐵. 

According to the ISO1940-1 standard, the unbalanced 

level of the rotor is G6.3. The relationship between the 

radial unbalance and the maximum rotation speed is as 

follows: 

log10(𝑒𝑝𝑒𝑟) = −log10(𝑛𝑚𝑎𝑥) + 4.778, 

i.e., 

𝑒𝑝𝑒𝑟 =
104.778

𝑛𝑚𝑎𝑥

=
6281 × 10−6

𝛺𝑚𝑎𝑥

(kg · m), 

where Ω𝑚𝑎𝑥is angular speed(rad/s). Through rotor mass 

of m=4230kg, the unbalance U can be obtained: 

𝑈 = 𝑒𝑝𝑒𝑟 ×𝑚 =
26.569

𝛺𝑚𝑎𝑥

(kg · m). 

According to the centrifugal force equation 𝐹𝑃 = 𝑚𝛺2𝑟, 

the centrifugal force produced by the rotor at this 

unbalanced amount is as: 

𝐹𝑃 = 𝑈 × 𝛺2 =
26.57𝛺2

𝛺𝑚𝑎𝑥

(N). 

 

 
 

Fig. 4. Rotor initial phase angle. 
 

The initial phase angle of the unbalanced mass of 

the rotor is defined in Fig. 4. The components of the 

centrifugal force in the x and y directions can be obtained 

[2]: 

𝑃𝑥 = 𝐹𝑃sin(𝛺𝑡 + 𝜑), 
𝑃𝑦 = 𝐹𝑃cos(𝛺𝑡 + 𝜑). 

In the three typical unbalanced positions in Fig. 2, 

unbalances are respectively set to analyze the effects of 
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unbalances at different positions on the rotor response 

results. Specific unbalanced arms are shown in Table 3. 

 

Table 3: Design parameters of AMBs 

Unbalance Position Number Arm Unit 

UBP1:Impeller position ( 𝑙01) -1.2 m 

UBP2:AMB-A position (𝑙02) -0.7 m 

UBP3:Centroid position(𝑙03) 0 m 

 

II. COUPLING DYNAMIC AND CONTROL 

METHODS 

A. Rotor dynamic equation 

The radial load of the rotor is perpendicular to the 

rotational speed, so a change of radial load produces  

a gyroscopic moment, resulting in the four degrees  

of freedom of the two radial bearings being coupled 

together. Therefore, the four degrees of freedom of the 

two radial bearings need to be analyzed together. The 

axial load is parallel to the rotational speed, so the 

change of the axial load does not produce a gyroscopic 

moment and can be analyzed separately. The analysis of 

axial bearing is similar to radial bearings, but with less 

freedom and simple analysis, which is not described.  

According to Fig. 2 to establish the rotor dynamics 

equation, the first is the rotor force balance equation: 

 𝑚 �̈� = 𝐹𝑥𝑎 + 𝐹𝑥𝑏 + 𝑃𝑥, (1) 

 𝑚 �̈� = 𝐹𝑦𝑎 + 𝐹𝑦𝑏 + 𝑃𝑦. (2) 

Secondly, the torque balance equation of the rotor is 

considered, considering the gyroscopic effect of the rotor: 

 𝐽𝑥𝜃�̈� − 𝐽𝑧Ω𝜃�̇� = −𝐹𝑦𝑎𝑙𝑎 + 𝐹𝑦𝑏𝑙𝑏 + 𝑃𝑦𝑙0, (3) 

 𝐽𝑦𝜃�̈� + 𝐽𝑧Ω𝜃�̇� = 𝐹𝑥𝑎𝑙𝑎 − 𝐹𝑥𝑏𝑙𝑏 − 𝑃𝑥𝑙0. (4) 

Combining equations 1-4 and representing them 

with a matrix equation: 

 𝑀𝑋�̈� + 𝐶𝑋�̇� = 𝑇𝑓𝐹 + 𝑃. (5) 

Where, 

𝑀 =

[
 
 
 
𝑚

𝑚
𝐽𝑥

𝐽𝑦 ]
 
 
 

, 

C = [

0
0

0 −𝐽𝑧Ω

𝐽𝑧Ω 0

], 

𝑇𝑓 = [

1 1 0 0
0 0 1 1
0 0 −𝑙𝑎 𝑙𝑏
𝑙𝑎 −𝑙𝑏 0 0

], 

𝐹 =

[
 
 
 
𝐹𝑥𝑎
𝐹𝑥𝑏
𝐹𝑦𝑎
𝐹𝑦𝑏]

 
 
 
; 𝑃 =

[
 
 
 

𝑃𝑥
𝑃𝑦
𝑃𝑦𝑙0
−𝑃𝑥𝑙0]

 
 
 

; 𝑋𝑐 = [

 𝑐
 𝑐
𝜃𝑥
𝜃𝑦

]. 

The displacement and the rotation angle of the  

centroid are transformed into displacements in the four 

directions of AMB-A and AMB-B by the transformation 

matrix 𝑇𝑡, i.e., 𝑋𝑐 = 𝑇𝑡𝑋, where, 

𝑋 = [

 𝑎
 𝑏
 𝑎
 𝑏

], 

𝑇𝑡 =

[
 
 
 
 
 
 

𝑙𝑏

𝑙𝑎+𝑙𝑏

𝑙𝑎

𝑙𝑎+𝑙𝑏
0 0

0 0
𝑙𝑏

𝑙𝑎+𝑙𝑏

𝑙𝑎

𝑙𝑎+𝑙𝑏

0 0 −
1

𝑙𝑎+𝑙𝑏

1

𝑙𝑎+𝑙𝑏
1

𝑙𝑎+𝑙𝑏
−

1

𝑙𝑎+𝑙𝑏
0 0 ]

 
 
 
 
 
 

. 

Equation 5 is converted to equation 6 by 𝑋𝑐 = 𝑇𝑡𝑋: 

 𝑀𝑇𝑡�̈� + 𝐶𝑇𝑡�̇� = 𝑇𝑓𝐹 + 𝑃. (6) 
 

B. The relationship between AMB force and rotor 

displacement under PD control 

The equation for the electromagnetic force generated 

by a single electromagnet is: 

 𝐹𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 =
𝜇0𝑁

2𝐼2𝐴𝑗𝑟𝑝

8𝑔2
= 𝑘

𝐼2

𝑔2
. (7) 

Where 𝑘 =
𝜇0𝑁

2𝐴𝑗𝑟𝑝

8
, the notation g is the gap between 

the AMB and the rotor as shown in Fig. 3, the notation I 

is the current of the AMB [3]. 

Take the relationship between 𝐹𝑥𝑎  and  𝑎  as an 

example to derive the relationship between electromagnetic 

force and displacement in each direction. Assume that 

the initial gap of the bearing is 𝑔0, then the gap of the 

bearing after the rotor moves is: 

 {
𝑔𝑥𝑎+ = 𝑔0 −  𝑎
𝑔𝑥𝑎− = 𝑔0 +  𝑎

. (8) 

Where the notation 𝑔𝑥𝑎+ is the gap between the rotor and 

the magnetic poles of bearing A in x positive direction. 

The notation 𝑔𝑥𝑎− is the gap between the rotor and the 

magnetic poles of bearing A in x reverse direction. 

Two magnetic poles symmetrical at the  𝑎 direction 

use differential control, i.e.: 

 {
𝐼𝑥𝑎+ = 𝐼0 + 𝐼𝑥𝑎
𝐼𝑥𝑎− = 𝐼0 − 𝐼𝑥𝑎

. (9) 

Where the notation 𝐼𝑥𝑎+  is the control current of the 

magnetic poles of bearing A in x positive direction and 

the notation 𝐼𝑥𝑎− is the control current of the magnetic 

poles of bearing A in x reverse direction. 

Therefore, the relationship between bearing force 

and displacement is as follows: 

 𝐹𝑥𝑎 = 𝑘 [
(𝐼0+𝐼𝑥𝑎)

2

(𝑔0−𝑥𝑎)
2 −

(𝐼0−𝐼𝑥𝑎)
2

(𝑔0+𝑥𝑎)
2]. (10) 

The relationship between force and displacement 

and current is linearized. The two order Taylor expansion 

is performed at  𝑎 = 0  and 𝐼𝑥𝑎 = 0  and the second-

order and higher-order terms are ignored: 

 [
(𝐼0+𝐼𝑥𝑎)

2

(𝑔0−𝑥𝑎)
2 −

(𝐼0−𝐼𝑥𝑎)
2

(𝑔0+𝑥𝑎)
2] ≈ 𝐼𝑥𝑎

4𝐼0

𝑔0
2 +  𝑎

4𝐼0
2

𝑔0
3 . (11) 
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The relationship between AMB force and control 

current and rotor displacement at direction of  𝑎  is 

obtained: 

 𝐹𝑥𝑎 = 𝑘 (𝐼𝑥𝑎
4𝐼0

𝑔0
2 +  𝑎

4𝐼0
2

𝑔0
3). (12) 

Finally, the relationship between AMB force F and 

X is as follows: 

 𝐹 = 𝑘
4𝐼0

𝑔0
2 𝐼𝐶 + 𝑘

4𝐼0
2

𝑔0
3 𝑋. (13) 

Where 𝐼𝐶  is the control current: 

𝐼𝐶 =

[
 
 
 
𝐼𝑥𝑎
𝐼𝑥𝑏
𝐼𝑦𝑎
𝐼𝑦𝑏]

 
 
 
. 

PD control is adopted between control current 𝐼𝐶  

and displacement X, as shown in Fig. 5 [4]: 

 𝐼𝐶 = −𝑝𝑋 − d�̇�, (14) 

Where, 

𝑝 = diag[𝑝𝑎, 𝑝𝑏 , 𝑝𝑎 , 𝑝𝑏], 
𝑑 = diag[𝑑𝑎 , 𝑑𝑏 , 𝑑𝑎, 𝑑𝑏]. 

 

 
 

Fig. 5. the block diagram of the closed loop controlled 

system. 

 

By combining equations 6, 13, and 14, the rotor 

dynamics equation that coupled dynamic equations and 

control methods are obtained: 

 𝑀𝑒�̈� + 𝐶𝑒�̇� + 𝐾𝑒𝑋 = 𝑃. (15) 

Where, 

𝑀𝑒 = 𝑀𝑇𝑡 , 

𝐶𝑒 = 𝐶𝑇𝑡 + 𝑘
4𝐼0
𝑔0

2
𝑇𝑓𝑑, 

𝐾𝑒 = 𝑘
4𝐼0
𝑔0

2
𝑇𝑓𝑝 − 𝑘

4𝐼0
2

𝑔0
3
𝑇𝑓 . 

By setting the equivalent stiffness and the equivalent 

damping ratio to determine the control matrix 𝑝 and 𝑑. 

Setting 𝐾𝑒(1,1) = 𝐾𝑒(1,2) = 𝐾 , the 𝑝 can be obtained 

and setting damping ratio is 𝜁 , the 𝑑 can be obtained 

through equations 16,17: 

 𝐶𝑒(1,1) = 2𝑀𝑒(1,1)√
𝐾𝑒(1,1)

𝑀𝑒(1,1)
𝜁, (16) 

 𝐶𝑒(1,2) = 2𝑀𝑒(1,2)√
𝐾𝑒(1,2)

𝑀𝑒(1,2)
𝜁. (17) 

 

III. NUMERICAL SIMULATION RESULTS 

A. Time response results 

The numerical solution method of time domain 

equation mainly includes mode superposition method 

and direct integration method. The mode superposition 

method needs to first obtain the mode shape of the model, 

which is suitable for calculating the seismic response  

that discard the influence of higher-order modes. This 

method is limited to applications within the elastic range 

and takes more time to calculate. The direct integration 

method does not require vibration mode analysis, and  

the equation is directly integrated by discrete time. The 

general direct integration methods include linear 

acceleration method, Wilson-θ method and Newmark-β 

method. For the linear integration method, the stability 

condition depends on the step size, and the step size 

depends on the minimum period of the discrete structure, 

which is difficult to determine. The Wilson-θ method 

improves the linear integration method by introducing 

the θ factor, and the convergence of the method can  

be ensured by defining the θ. The Newmark-β method  

is another variant of the linear acceleration method. 

Compared with the Wilson-θ method, its calculation 

accuracy and computational stability are more controllable, 

but the calculation process is more complicated [5,6]. 

The rotor's time-domain result of unbalanced 

response is solved by equation 15 and Wilson-θ method. 

The initial condition of the rotor at time 0 s is �̇�(0) = 𝑋0̇, 

𝑋(0) = 𝑋0. 𝑋0̈ can be solved by 𝑋0̇, 𝑋0and equation 15 

as 𝑋0̈ = 𝑀𝑒
−1(𝑃0 − 𝐾𝑒𝑋0 − 𝐶𝑒 𝑋0̇). 

Dissipate the entire analysis time into multiple 𝛥𝑡, 
and assume that the acceleration in each 𝜃𝛥𝑡  period 

changes linearly, where 𝜃 is time magnification factor, 

that is shown in Fig. 6. 
 

 
 

Fig. 6. Linear change of acceleration. 
 

Set, 

  𝛥𝑋𝑆̈ (𝑡) = �̈�(𝑡 + 𝑠) − �̈�(𝑡), (18) 

𝑝

𝑑
𝑑

𝑑𝑡

−1

∑ 𝑘
4𝐼0
𝑔0

2

𝑃

𝑀 
−1

∫

∫

�̈�

�̇�

𝑋

∑

𝑘
4𝐼0

2

𝑔0
3

Control
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define the function of �̈� about τ, 

  �̈�(𝑡 + 𝜏) = �̈�(𝑡) +
𝜏

𝑠
Δ𝑋𝑆̈ (𝑡). (19) 

Perform one and two integrals for τ and take τ=s: 

  �̇�(𝑡 + 𝑠) = �̇�(𝑡) + 𝑠�̈�(𝑡) +
𝑠

2
Δ𝑋𝑆̈ (𝑡), (20) 

  𝑋(𝑡 + 𝑠) =  

 𝑋(𝑡) + 𝑠�̇�(𝑡) +
𝑠2

2
�̈�(𝑡) +

𝑠2

6
Δ𝑋𝑆̈ (𝑡). (21) 

Bring equation 18 into equations 20 and 21: 

  �̇�(𝑡 + 𝑠) =  

 �̇�(𝑡) +
𝑠

2
�̈�(𝑡) +

𝑠

2
�̈�(𝑡 + 𝑠), (22) 

  𝑋(𝑡 + 𝑠) =  

 𝑋(𝑡) + 𝑠�̇�(𝑡) +
𝑠2

6
[�̈�(𝑡 + 𝑠) + 2�̈�(𝑡)]. (23) 

At t+s, the equation of motion of the rotor is: 

 𝑀𝑒�̈�(t + s) + 𝐶𝑒�̇�(t + s) + K𝑒𝑋(t + s)  

 = 𝑃(t + s). (24) 

Combining equations 22, 23, and 24 and eliminating 

�̇�(𝑡 + 𝑠) and �̈�(𝑡 + 𝑠): 

  (
6𝑀𝑒

𝑠2
+

3𝐶𝑒

𝑠
+ K𝑒) 𝑋(t + s) =  

 [(
6𝑀𝑒

𝑠2
+

3𝐶𝑒

𝑠
) 𝑋(𝑡) + (

6𝑀𝑒

𝑠
+ 2𝐶𝑒) �̇�(𝑡)  

 +(2𝑀𝑒 +
𝑠𝐶𝑒

2
) �̈�(𝑡) + 𝑃(t + s)]. (25) 

Equation 26 can be obtained from Fig. 6: 

 �̈�(𝑡 + 𝑠) = 𝜃�̈�(𝑡 + 𝛥𝑡) + (1 − 𝜃)�̈�(𝑡). (26) 

Substitute equation 26 into equation 23, and set 𝑠 = 𝜃𝛥𝑡: 

  �̈�(𝑡 + 𝛥𝑡) =
6

𝜃3𝛥𝑡2
[𝑋(𝑡 + 𝑠) − 𝑋(𝑡)]  

 −
6

𝜃2𝛥𝑡
�̇�(𝑡) + (1 −

3

𝜃
）�̈�(𝑡). (27) 

In equation 22 and equation 23, set 𝑠 = 𝜃𝛥𝑡: 

 Ẋ(t + Δt) =  

 Ẋ(t) +
Δt

2
Ẍ(t) +

Δt

2
Ẍ(t + Δt), (28) 

 X(t + Δt) =  

 𝑋(𝑡) + 𝛥𝑡�̇�(𝑡) +
𝛥𝑡2

6
[�̈�(𝑡 + 𝛥𝑡) + 2�̈�(𝑡)]. (29) 

The entire iterative solution process is as follow five 

steps: 

Step1:  𝑋(t + s)  is solved by 𝑋(𝑡) , �̇�(𝑡) , �̈�(𝑡) , 

𝑃(t + s) and equation 25; 

Step2: �̈�(𝑡 + 𝛥𝑡)  is solved by 𝑋(𝑡) , �̇�(𝑡) , �̈�(𝑡) , 

𝑋(t + s) and equation 27; 

Step3:  �̇�(𝑡 + 𝛥𝑡)  is solved by �̇�(𝑡) , �̈�(𝑡) , �̈�(𝑡 +
𝛥𝑡) and equation 28; 

Step4:  𝑋(𝑡 + 𝛥𝑡)  is solved by 𝑋(𝑡) , �̇�(𝑡) , �̈�(𝑡) , 

�̈�(𝑡 + 𝛥𝑡) and equation 29; 

Step5: Replace 𝑡 with 𝑡 + 𝛥𝑡, repeat step1to step4. 

For the wilson − θ method, the calculation is stable 

when 𝜃 > 1.37, generally taking 𝜃 = 1.4 [6]. 

When the rotation speed is 4000 r/min  and the 

unbalanced position is UBP1. The K is  1 × 107 N/m 

and the damping ratio is 0.5.The time-domain response 

results of rotor displacement and AMB force within 0.2 s 
are shown in Fig. 7 and Fig. 8. 

 

 
 

Fig. 7. Time-domain response results of rotor 

displacement (4000r/min). 
 

 
 

Fig. 8. Time-domain response results of AMB force 

(4000r/min). 
 

B. The effect of unbalanced position on the response 

result 

In order to analyze the rotor displacement response 

and bearing load response during the entire speed-up 

process (from 0r/min to 4000r/min), the 81 time-domain 

response curves of the rotor is calculated at intervals of 

50r/min. A Fourier transform is performed on each time-

domain response curve to obtain a frequency-domain 

curve of the rotor at a fixed rotational speed (the Fig. 9 

and the Fig. 10 show the frequency-domain curve, which 

is obtained through Fourier transform from Fig. 7 and Fig. 

8). The 81 frequency-domain curves are drawn together, 

and the envelope curves of 81 curves are the frequency-

domain curves during the rotor speed-up process, and the 

peaks of Fig. 9 and Fig. 10 are indicated by red circles in 

Figs. 9-16 [7]. 
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Fig. 9. Frequency-domain response results of rotor 

displacement (4000r/min). 
 

 
 

Fig. 10. Frequency-domain response results of AMB 

force (4000r/min). 

 

The AMB stiffness is 𝐾 = 1 × 107 N/m  and the 

damping ratio is 𝜁 = 0.5. The frequency-domain effect 

of the unbalance position (UBP) on the rotor displacement 

and AMB force is analyzed, which is shown in Fig. 11 

and Fig. 12. 

From Fig. 11 and Fig. 12, it can be seen that when 

the stiffness and damping ratio are the same, the farther 

the unbalance mass deviates from the centroid of the 

rotor, the greater the displacement of rotor and force of 

AMB. Compared with AMB-A and AMB-B, it can be 

found that for the condition of UBP1 and UBP2, because 

the position of AMB-B is farther from the unbalanced 

load than the position of AMB-A, this means that its arm 

is longer and the bearing force it needs to bear is greater, 

and its displacement response is also more pronounced. 

 

 
 

Fig. 11. Rotor displacement frequency response curve 

(different unbalance position). 
 

 
 

Fig. 12. AMB force frequency-domain curve (different 

unbalance position). 

 

C. The effect of AMB stiffness on the response result 

Select the unbalance condition UBP1 with maximum 

rotor displacement and bearing load according to section 

B and fix damping ratio 𝜁 = 0.5 to analyze the frequency-

domain effect of different bearing stiffness on rotor 

displacement and AMB force. The results are shown in 

Fig. 13 and Fig. 14. 

From Fig. 13 and Fig. 14, it can be seen that as the 

stiffness increases, the rotor displacement decreases and 

the AMB force increases, but the reduction of the rotor 

displacement is not obvious and the increase of the AMB 

force is significant which may lead to saturation of the 

magnetic actuator. [8] By selecting an appropriate bearing 

stiffness, both rotor displacement and bearing load can 

be guaranteed. 
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Fig. 13. Rotor displacement frequency response curve. 
 

 
 

Fig. 14. AMB force frequency response curve. 
 

D. The effect of damping ratio on the response result 

The unbalance condition is same as section C, and 

fix stiffness 𝐾 = 1 × 107N/m to analyze the effect of 

different stiffness ratio on rotor displacement and AMB 

force. The results are shown in Fig. 15 and Fig. 16. 
 

 
 

Fig. 15. Rotor displacement frequency response curve. 

 
 

Fig. 16. AMB force frequency response curve. 
 

From Figs. 15 and 16, it can be seen that the results 

are similar to Section C. As the damping ratio increases, 

the rotor displacement decreases and the AMB force 

increases. By selecting appropriate damping ratio, both 

rotor displacement and bearing load can be guaranteed. 
 

IV. CONCLUSION 
When the stiffness and damping ratio are the same, 

the farther the unbalance mass deviates from the centroid 

of the rotor, the greater the displacement of rotor and 

force of AMB. The arm from the bearing to the 

unbalance position is longer and the bearing force it 

needs to bear is greater, and its displacement response is 

also more pronounced. 

Increasing the stiffness and damping ratio of 

bearings can effectively reduce the unbalance response 

of the rotor, but it will significantly increase the bearing 

load. Therefore, when determining the bearing stiffness 

and damping ratio, it is necessary to consider the bearing 

load and displacement comprehensively and select the 

optimal solution. 

The follow-up work of this paper mainly includes: 

1) Using the method of this paper to calculate the 

unbalanced response of the system under different 

conditions, and compare it with the actual running data 

to realize the correction of the system model. This work 

can be combined with the linear identification method 

[9]. 2) When a rotor-drop occurs, the system may exhibit 

nonlinearity [10-12], and it is necessary to consider 

extending the work of this paper to a nonlinear model. 
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