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Abstract ─ In this article, the vertical and horizontal 

forces of interaction of permanent magnets in a magnetic 

support system (magnetic suspension, MS) are 

considered. Permanent magnets have a stepped structure 

and uniform magnetization M  throughout their entire 

volume ( M  const ). The magnetic support system 

contains multi-row magnetic strips. The results of the 

comparison of the vertical and lateral forces for the classic 

horizontal magnetic system (HMS) are presented too. A 

stability factor index, the ratio of vertical to lateral force 

of interaction Z Yf f  , and an effectiveness factor 

( )eff Zf mg   are defined (where mg is the weight of 

the magnets per unit length). A prototype of the proposed 

magnetic support system was built, and measurements 

were performed. Analysis of the obtained data indicates 

that the investigated magnetic suspension system performs 

better than the classical horizontal MS system. 

 

Index Terms ─ Permanent magnets, stability, stepped 

suspension, suspension effectiveness factor, vertical and 

horizontal forces. 

 

I. INTRODUCTION 
In this work the vertical and the horizontal forces of 

interaction in a horizontal magnetic support (HMS) 

system (also referred to as magnetic levitation or 

suspension, MLS) are analyzed. The system contains 

multi-row magnetic strips (permanent magnets) and has 

a stepped structure as well as a classical structure. 

The magnets have a rectangular cross-section and  

a sufficiently high stability of the magnetization M  

throughout their entire volume ( M  const ). The 

magnetization vector is directed vertically, along both 

the positive and negative directions of the z-axis. 

 

II. MAGNETIC SUSPENSION (SUPPORT) 

SCHEMES 
Schematic diagrams of the analyzed systems are 

represented in Figs. 1 to 3 (cross-section of magnetic 

systems). The length is in the normal direction. 

 
 

Fig. 1. Classical scheme of MLS. 
 

 
 

Fig. 2. Scheme with vertical displacement (stepped 

structure). 
 

 
 

Fig. 3. Combined scheme, classical and stepped structure. 
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In all of the depicted schemes, the cross-sectional 

dimensions of the magnets are much smaller than their 

lengths (in the normal direction). That is, a<<l and h<<l. 

In the system depicted in Fig. 4, the magnets 1а and 1b 

in the suspended section A are fixed on a the non-

ferromagnetic base 2. Magnets 4а and 4b of the stationary 

section B are also fixed on the non-ferromagnetic base 3, 

like the magnets 1a and 1b. The basic working gap is 

referred to as  . 

The distance between adjacent magnetic strips is 

equal to c. In the figure, arrows are used to indicate  

the direction of the magnetization M  of the permanent 

magnets 1 and 4. 

 

 
 

Fig. 4. The symmetrical scheme of magnetic support. 

 

As is evident from the figure, the magnetic strips 1a 

and 1b (or 4a and 4b) are moved in the vertical direction 

to 
1h . The expected effectiveness of the suspension 

system is based on the special features of the cross-

interaction of magnets 1b and 4a (left and right pairs). 

In other words, the effectiveness of the system can 

be explained by the distribution of the magnetic flux 

created by these magnets. Thus, the positive effect of the 

magnetic bearings (suspension) is achieved through the 

use of leakage flux. 

The magnetic system shown in Fig. 3 differs from 

the system depicted in Fig. 2, in that each of the magnetic 

strips shown in Fig. 2 has been replaced by two strips 

with alternating polarities. In the plane YOX, the support 

system can take the form shown in Fig. 5. 

 

III. INTERACTION ANALYSIS FOR 

STEPPED SYSTEM 
Under certain conditions (a<<l), the description of 

the interaction of the magnetic systems, represented with 

adequate accuracy in Fig. 5.1, is also valid for the case 

depicted in Fig. 5.2. Therefore, the interaction analysis 

of the magnetic systems depicted in Fig. 1 can be carried 

out only for the linear system (Fig. 5.1). 

The forces of vertical and horizontal interaction in 

the magnetic systems can be determined using the 

expression for the potential energy of a permanent 

magnet that is located in an external magnetic field: 

 0p

V

E M H dV   , (1) 

In (1) 







 

m

H7

0 104 , M  is the magnetization 

vector (e.g., the magnet 1a or 1b) and ( , )H y z  is the 

vector of magnetic field intensity (of the external magnetic 

field), created, for example, by the magnet 4a or 4b. 

Integration is performed on the volumes of the magnets 

which possesses the magnetization M . 

Expressions for the interaction forces of permanent 

magnets can be obtained using the equation 
pF E  . 

For the vertical and horizontal components of the force, 

this formula gives us: 

 ,
p p

z y

E E
F z F y

z y

 
   

 
, (2) 

where y  and z  are the unit vectors of axes y and z 

respectively. 

 

 
 

Fig. 5. Details of the stepped magnetic suspension. 5.1: 

Linear support. 5.2: Locked (circular) support. 5.3: Cross 

section. 1a and 1b – moving magnets of the support 

system, 4a and 4b – stationary magnets. 
 

The efficiency 
eff  of the support schemes shown  

in Figs. 1 to 3, can be estimated using the following 

expression: 

 ( )eff Zf mg  , (3) 

in which  zf N m  is the vertical interaction force for 

the unit length of the system that includes magnets 1 and 

4 and mg is the weight per unit length of magnets 1a and  

1b (or magnets 4a and 4b). 

To find the interaction force of magnetic systems, 

we must first determine the magnetic field intensity 
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( , )H y z  in those systems. Each magnet in Fig. 4 (e.g., 

1a or 4a) has a rectangular cross-section and can be 

represented by two faces (strips), each with a uniformly 

distributed fictitious magnetic charge with a surface 

density 
0 M     [1].  

The calculation schemes for the determination of 

( , )H y z  referred to Figs. 1 to 3 are shown in Fig. 6. 
 

 
 (a) 

 
 (b) 

 
 (c) 

 

Fig. 6. Calculation schemes corresponding to Figs. 1 to 

3. 

 

In accordance with [1, 2] and as shown in Fig. 7, 

based on the concept of the fictitious magnetic charge, 

the two-dimensional potential of the magnetic field 

produced by the “face-charge” at any point, can be 

expressed as:  

 
2 2

0 0

( , ) ln ( )
4

a

y z z y u du



 

        . (4) 

The components of the intensity of the magnetic 

field are determined by the following expressions: 

 
( , ) ( , )

( , ) ; ( , )z y

y z y z
H y z H y z

z y

  
   

 
. (5) 

By substituting (4) into (5), we obtain the expressions 

for the intensity of the magnetic field at the point  ,P y z : 

  
0

,
2

z

y y a
H y z arctg arctg

z z



 

 
  

 
, (6) 

      22 2 2

0

, ln ln
2

yH y z y z a y z


 
     
 

. (7) 

The vertical component of the force interaction of 

two charged surfaces with charge densities 
1 2     

can be determined using (1) and (2): 

 ( , )

t a

z z

t

F H y z dy


  . (8) 

Now, using (6) after a series of transformations, the 

vertical force per unit length of magnetic systems can be 

written for the scheme in Fig. 6 (a), as: 

 

1 2 (0, ) 4 (0, ) 2 (0, 2 )

2 ( , ) 2 ( , 2 )

4 ( , ), ( / ),
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z z

z

f f f h f h
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 (9) 

For the scheme in Fig. 6 (b), we can write, 
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 

 
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      

       

      

 (10) 

where the expression for ( , )zf y z  has the following form 

[2]: 

 

2
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2

( ) 2

( )
ln ).

2 ( ( ) ) ( ( ) )

z

M y a
f y z y a arctg
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y a y
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z y a z y a






   


    
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

    

 (11) 

Finally the expression of 
3zf  can be similarly derived 

by properly considering the interactions between the 

charged surfaces reported in Fig. 6 (c). 

Referring to Figs. 1 to 3, the following values of the 

parameters have been selected for the evaluation of 1zf  

and 2zf : 0.02 ,a m  0.015h m , 1 0.01 0.02h m    

( 1 0.002h m  ), 0.005 0.02m    ( 0.0025m  ), 

0 0.01c m   ( 0.0025c m  ), 1 0 ;c m  and 

1 0.005c m . 

Some of the results of these calculations are 

presented in the Table 1 below, in which 
1zf  is the 

ACES JOURNAL, Vol. 32, No. 8, August 2017733



vertical force of interaction (with 
1 0h  , ref. to Fig. 1, 

i.e., the configuration without the step). 

 

 
 

Fig. 7. The calculation scheme for a charged surface of a 

magnet. 

 

Table 1: Results of the calculations for 7.5mm   

mg

f z
eff

1
1   

1 [ ]h mm  
1

2

z

z

f

f
 

mg

f z
eff

2
2   

10.4 1.0 1.49 15.4 

10.4 1.2 1.53 16.0 

10.4 1.4 1.54 16.0 

10.4 1.6 1.50 15.5 

10.4 1.8 1.41 14.6 

10.4 2.0 1.24 12.8 

 

A graph of the dependence ( )zf   for two cases 

(with the step (
2zf ) and without the step (

1zf )) is 

presented in Fig. 8. 

 

 
 

Fig. 8. Graph of the dependence ( )zf  . 

 

IV. SIDE FORCES ANALYSIS 
In the case of two magnetic strips which are offset 

relative to each other in the horizontal direction by the 

distance y , as shown in Fig. 9, expression (1) becomes: 

 0

0

y ab h

p z

y

E M dx dy H dz







 

    . (12) 

In the case of the interaction of n  magnetic strips, 

the potential energy of the system is determined by 

summing the energies ij  of each ith fixed magnet (4a 

or 4b, Fig. 4, 
1 0h  ) with each jth magnet (1a, 1b) of the 

moving part of the system, i.e., 

 



n

j

ij

n

i

pE
11

0
. (13) 

The dependence of side destabilizing forces (acting 

on a unit length of a magnetic strip) on the value of 

lateral displacement takes the form: 

 
1 1

1
( )

n n

y ij

i j

f
l n y  


   

 
  , (14) 

where n is the number of magnetic strips on the mobile 

(or stationary) portion of the magnetic bearing, and l is 

the length of the magnetic strip. 

Expression (14), which takes into account formulas 

(6), (7) and (13) for interacting bands (Fig. 5) with two 

pairs of lateral displacement y , allows to record a 

destabilizing force in the form of: 

 

2

0

2 2

(
2

1 1
)

2 2

h
y y a

y z y y

h h
y y a c y y a c

z zy a c y y y

M
f H dz

H dz H dz





 

 





 



 
     

   

  





 

. (15) 

 

 
 
Fig. 9. The classical magnetic support scheme with 

lateral displacement. 

 

Table 2 shows the results of calculations of the 

lateral force yf , dependent on the distance c between the 

strips, with 1l m , 7.5mm  , 60a mm , 50h mm  

and 1 0h mm , that is, the vertical offset (step) is absent. 

The same table shows the ratio of the vertical and lateral 

forces, ( z yf f  ), defined as a measure of system 

stability (this index can essentially be defined as a 

destabilizing factor; the greater the value, the less 

resistant the support system is to tipping or sliding). 
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Table 3 shows the results of calculating the lateral 

force, dependent on the side displacement, at 1l m , 

7.5mm  , 60a mm , 50h mm .  

Table 4 shows the calculation of yf  for two and three 

strips with 1l m , 7.5mm  , 60a mm , 50h mm . 

 

Table 2: Dependence of the side force on the distance 

between the strips: 1y mm , 3n  , and 
1 0h   

 c mm   yf N m  z yf f   

  19.3 

  20.0 

  22.5 

 
Table 3: Dependence of lateral forces on the magnitude 

of side displacement y : 3n  , 10c mm  

 y mm   yf N m  1y y mmf f   

  1 

  2 

  3 

  3.9 

 
Table 4: Relationship of side force with number n of 

strips 

n  y mm   yf N m  

  41.0 

  44.0 

  81.0 

  88.0 

 
Figure 10 is a plot of the clearance   at the lateral 

displacement y , when 64a mm , 56h mm  and 

10c mm . 

 

 
 
Fig. 10. Loci of the vertical force in the lateral 

displacement - clearance ( y -  ) plane. 

 

V. CONCLUSION 
The vertical and horizontal forces of interaction 

between permanent magnets in a magnetic support system 

(magnetic suspension, MS) have been investigated.  

The main results of the investigations are here briefly 

summarized. 

1. The analysis of the obtained data for the stepped 

MS indicates that the investigated magnetic suspension 

system (Fig. 2 and Fig. 3) outperforms the classic 

horizontal system (Fig. 1). 

2. The ratio z yf f   increases with increasing 

width a, indicating a reduction of the instability of the 

support system in the horizontal plane (Fig. 9). 

3. The stability factor   grows more slowly than  

the width a of the magnetic strip. Doubling y  causes 

z yf f   to double. The nonlinearity of the relationship 

 yf y  becomes apparent when 0.5.y a   For smaller 

values of y , the lateral force between the magnets can 

be approximated by  yf y ky . 

4. Increasing the number of rows of magnets leads 

to an increase of the lateral force yf , as was the case for 

the vertical force 
zf . 
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