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Abstract ─ In this paper we apply the physical 

mathematical model described in Part I [1]. The study 

shows: i) the influence of the eccentricity of two polarized 

rings of the bearing on the stiffness; ii) the numerical 

efficiency of the response surfaces for evaluating the 

magnetic field in any point of the domain fixed; iii), in 

relation to a demanding application example (possible 

replacement of a big axial oleodynamic bearing with a 

thrust magnetic passive bearing), the danger arising from 

possible resonances (the natural frequencies of the device 

are near to the excitation frequencies). 

 

Index Terms ─ Levitation, magnetic bearings, 

magnetostatic field, natural frequencies, stiffnesses. 

 

I. INTRODUCTION 
With reference to the formulations illustrated in Part 

I, some numerical computations to evaluate forces/ 

moments, stiffnesses, and natural frequencies relative  

to an application example have been performed. The 

calculation of the magnetic induction was executed first 

thing. This computation is based on the response surfaces 

[2]. The components ( ),P'xB  ( ),P'yB  and ( )P'zB  have 

been evaluated in a certain number of points suitably 

arranged on the surface where we compute ( ).B P'  

Subsequently, a surface that interpolates the values  

of ( ),P'xB  ( ),P'yB  and ( )P'zB  is defined. The two 

dimensional domain of the surface is represented by the 

integration parameters that define the polar coordinates 

of the generic point P'  (in general these coordinates  

are r and θ). In Fig. 1, an example of response surface  

is illustrated. For example, the points P'  where )(P'
x

B  

is computed are indicated by a small circle. In this way 

we can virtually have infinite points P'  where the 

magnetic induction is known without performing other 

integrations: as soon as we fix r and θ we can 

immediately interpolate the corresponding value of 

( ).B P'  The interpolation is so fast that it is possible to 

perform the integration to compute forces and moments  

in a few seconds. Moreover, as illustrated in Fig. 1, by 

plotting ( ),xB r,θ ( ),yB r,θ  and ( )yB r,θ  a check of the 

interpolation fitness can be easily performed: the response 

surface must not show anomalous peaks, it has to be a 

continuous function of r and θ. All these computations 

have been performed by using Mathematica [3]. These 

computations can surely be performed by using the finite 

elements methods [4], [5] but, the computing time can  

be much longer. In relation to the influence of the 

inclination angle   of the magnetization M (see Fig. 2 

in Part I [1]), we observe that it has always a constant 

value. Consequently, the quantity  sin  has always been 

put out from all the integral signs defined in Part I [1] for 

computing the magnetic inductions, forces and moments. 

This fact enables us to compute at once the previous 

quantities relative to each angle   lower than 90 degrees 

as soon as the same quantities have been computed  

with 90  degrees. As a matter of fact, to perform  

the magnetic inductions computation, we have only to 

multiply each value obtained with 90  degrees by  

the sine of the new angle 90  degrees. In the case of 

forces, moments, and stiffnesses, the values evaluated 

with 90  degrees have to be multiplied for the square 

of the sine of the new angle 90  degrees.  
 

 
 

Fig. 1. Response surface for magnetic induction 

computation relative to 441 points (r,θ). 
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Fig. 2. Some real dimensions of a hydrounit thrust 

bearing with Kaplan turbine [8]. 

 

II. A DEMANDING APPLICATION 

EXAMPLE 
The physical mathematical model previously 

described in Part I [1] has been applied to define a 

possible initial step in dimensioning of a thrust magnetic 

passive bearing. This bearing should be able to generate 

the same thrust of a big axial oleodynamic bearing 

assembled in a hydrounit for electrical generation. With 

reference to an axial passive magnetic bearing that can 

generate a thrust equal about to 30 KN, some researchers 

[6], [7] are experimentally testing such kind of solution. 

In relation to a real hydrounit for electrical generation, in 

Fig. 2 [8] the inner and outer diameters of the relative 

oleodynamic bearing are reported in mm. Figure 3 [8] 

shows the thrust bearing pads of the bearing. The 

positioning of the bearing is indicated in Fig. 9 in Part  

I [1] (see the particular C) and the axial dimension of  

the bearing pads is equal to 100 mm (see Fig. 2). Over 

the bearing pads, the upper ring integral to the vertical 

shaft has a thickness also equal about to 100 mm. Unlike 

the bearing pads, the upper ring rotates together with the 

shaft. Therefore, in relation to our application example, 

for the polarized rings illustrated in Fig. 1 in Part I  

[1] we can fix the following dimensions: h=100 mm, 

ri=400 mm, and re=900 mm. The bearing pads and the 

upper ring would be substituted by the polarized rings  

A and B, respectively. Polarized rings of the previous 

size could be practically manufactured by superimposing 

many smaller polarized angular sectors. The thrust that 

the hydrodynamic bearing generates during a stationary 

working is very high and is equal to 5.5×106 N (with a 

rotational speed equal to 187.5 rpm). In order to obtain 

magnetic levitation forces so high, it is necessary to  

fix a very high value of the magnetization vector M. 

Nowadays, with reference to available neodymium 

magnets, the maximum value of the corresponding 

module M  is equal to 11.38×105 A/m [9]. However, as 

we will discuss in the following Section III, also if we use 

this high value of M , by considering an air gap ranging 

from 20 to 30 mm, we obtain about one-fifteenth of the 

thrust generated by the hydrodynamic bearing illustrated 

in Figs. 2 and 3. Therefore, in order to achieve the above-

mentioned thrust by passive magnetic levitation, it would 

be necessary to utilize at least sixteen polarized rings B 

(see Fig. 2 in Part I [1]) integral to the shaft and sixteen 

rings A integral to the base. From an engineering point 

of view, this number of rings is certainly too high. 

However, if we consider a Halbach configuration [10] of 

each polarized ring as illustrated in Fig. 4 [11], we could 

reduce the number of the rings magnets in such a way 

that a feasibility study could be considered. With 

reference to our demanding application example, since  

a Halbach magnets configuration could increase the 

attractive force of about fifty percent, assuming that  

the increase is true also when the facing magnets that 

generate repulsive forces, we could utilize only eight 

pairs of polarized rings. With reference to this 

configuration we observe that eight rings A (see Fig. 1 in 

Part I [1]) have to be fixed to the non-rotating frame. The 

other eight rings B will be fixed to the shaft of the rotor-

generator system. For example, four pairs A, B of rings 

could be arranged to define the upper axial bearing (see 

the area C in Fig. 9 in Part I [1]). The other four pairs of 

polarized rings A, B could be put under the rotor. 

Consequently, the axial height of each upper and lower 

magnetic passive bearing would be a bit greater than 

(100+100+20)x4=880 mm [20 mm represents a mean air 

gap t between each pair of rings and 100 mm is h (see 

Fig. 1 in Part I [1])]. The values of the air gap have been 

fixed from a possible engineering point of view in 

relation to a hypothetic stationary working condition of 

the device. The natural angular frequencies 
totem  and 

tottm  were evaluated with reference to Eqs. (25) and 

(26) in Part I [1], respectively, by considering the total 

mass mtot equal to 5.775×105 Kg plus 31200 Kg of 16 

polarized rings: mtot = 6.087×105 Kg. The value of 

5.775×105 Kg is greater than 5% with respect to the 

value of 5.5×105 Kg. The 5.5×105 Kg has been simply 

obtained by computing the mass that corresponds to the 

load of 5.5×106 N due to the gravity acceleration. This 

load is applied to the oleodynamic bearing. Moreover,  

in order to compute the frequencies 
i

em  and 
totem  by 

Eqs. (24) and (25) in Part I [1], respectively, in relation 

to all the simplifications considered, we can also assume, 

 
tot

mmmmm 
4321

. (1) 

Consequently, we obtain: 

 ,
h tot

e em emω ω ω   (2) 

 .
h tot

t tm tmω ω ω   (3) 

Moreover, if we consider eight pairs of polarized 

rings with eight Halbach rings B keyed on the shaft and 
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eight Halbach rings A fixed to the base of the structure, 

the stiffnesses Kt  and Ke relative to each pair of rings A, 

B non Halbach must be multiplied by 16 (the magnetic 

“springs” work in a parallel way). Consequently, the new 

equations for computing eω  and tω  relative to the two 

uncoupled vertical and horizontal DOFs (Degrees of 

Freedom) are the following [see Eqs. (22), (23), (25), and 

(27) in Part I]: 

 
t
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The maximum value of the eccentricity e considered 

in the numerical simulations was put equal to 0.01 m. 

However, in relation to a correct working of the 

hydrounit, e=0.01 m certainly is not an acceptable value 

(it is too high). Maximum values of e about equal or 

lower than 0.0001 m should be considered. Nevertheless, 

from the simulation point of view, the previous maximum 

value e=0.01 m has been fixed to test the fitness of the 

modelization. In this respect, we observe that the forces, 

stiffnesses, and natural angular frequencies must be 

always continuous functions of e. Always in order to 

check the correctness of the model, the air gap t range 

has been fixed from 0.003 m to 0.5000 m. From a 

possible practical point of view, when the device works 

under a stationary condition, the real value of t could 

reasonably change from 0.01 to 0.05 m. 
 

 
 

Fig. 3. Tilting-pads thrust bearing [8]. 

 
 

Fig. 4. A Halbach configuration [10] of a polarized ring 

[11]. 

 

III. RESULTS  
The results that have been obtained versus the air 

gap t and the eccentricity e are: i) the magnetic induction 

B on the ring horizontal surfaces of the upper magnet; ii) 

the levitation force; iii) the axial and radial stiffnesses of 

the bearing; iv) the natural frequencies in correspondence 

with certain values of the mass mtot. Table 1 summarizes 

the main data utilized to perform some simulations. The 

computation of the magnetic induction was executed in 

the points '
1

P  and '
2

P  of the upper and lower surfaces, 

respectively, of the polarized ring B. 441 points on each 

surfaces have been fixed. The polar coordinates of these 

points are defined by a radius r and an angle θ (see Fig. 

6 in Part I [1]). The values of r and the correspondent 

angle θ have been fixed by the following relations: 

 i
k

rr
rr

r

ie
i

)( 
 , (10) 

 j
k

θ

θ




2
, (11) 

where i=0, 1, …, 
r

k  and j=0, 1, …, 
θ

k . This kind of 

discretization of the surfaces allows us to obtain good 

response surfaces and limit the computation time to few 

tens of seconds (by using a computer with an Intel I5 and 

4 GB of RAM). An example of these results is illustrated 

in the previously cited Fig. 1. Another example 

concerning the magnetization induction vectors relative 

to the upper surface of the ring B with t=0.050 m, 

e=0.000 m, and =90 degrees is illustrated in Fig. 5.  

We observe the complete axial symmetry of the field. 

The same symmetry characterizes all the magnetic field 

configurations computed by using any value of the 

eccentricity e and see Table 1 This fact confirms that 

the law of energy conservation is respected because such 

a symmetry implies that the moment 
z

  around the axis 

Z [see Eq. (20) in Part I [1]] is always equal to zero. As 

a matter of fact, the numerical evaluations performed 

have always given values of 
z

  almost equal to zero or 

relatively small. In this regard, we observe that the 

component Fx of the resultant force F applied to the 

polarized ring B should be equal to zero. Therefore, it  
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is sufficient that the difference between Fx1 and Fx2 

(components of the forces applied to the lower and upper 

surfaces of the ring B, Fx = Fx1+Fx2) is equal to a few 

newtons and 
z

  at once reaches a value higher than  

zero, for example 3 Nm. Nevertheless, in relation to the 

precision of the numerical simulations, it is necessary  

to consider the orders of magnitude of the quantities 

evaluated. In the case study we observe that Fz and also 

Fy (when e is greater than zero) are equal to hundred 

thousands of newtons. Moreover, overall they were 

computed by a kind of formulation similar to that  

used to evaluate Fx. Therefore, with reference to the 

approximations that affect the numerical integration  

in the study context, we can consider the numerical 

results obtained for Fx and 
z

  very good, i.e., a good 

approximation of zero. In this respect, a typical trend of 

Fx versus 0.003≤t≤0.015 m (with e=0 and =90 degrees) 

is illustrated in Fig. 6. When different values of the 

parameter e is fixed, similar trends have been obtained. 

In relation to the values obtained for Fz versus the air  

gap t, Fig. 7 shows some curves examples. The curves 

have been achieved by fixing =90, 70, and 30 degrees, 

eccentricity e=0.000 m and the values of t reported in 

Table 1. With reference to a non-operative working 

condition of the magnetic bearing for the hydrounit 

application example, we also have performed some 

calculations with an air gap t=0.003 m. In order to assure 

a non-dangerous working condition of the system, this 

value is certainly too small. This air gap could be easily 

set to zero as a consequence of a small axial overload 

together with planarity, perpendicularity, etc. errors.  

In this case, to avoid the destruction of the device, 

mechanical “catcher” bearings could be suitably 

integrated around and outside the rings of the magnetic 

bearings. In Fig. 8 the axial stiffnesses Ktze(t) 

corresponding to the previous Fz (see Fig. 7) are reported. 

These stiffnesses have been evaluated by Eq. (4). Figure 

9 shows the relative angular natural frequencies )(tωtze  

computed by Eq. (5). In Fig. 10 a comparison among 

three functions Fz(e) is presented. Three values of the  

air gap t have been considered: t= 0.003, 0.010, 0.020 m. 

We note that the vertical levitation force changes enough 

versus the value of t. In relation to the scale of the 

representation of the graphs, as soon as t is fixed, it could 

seem that Fz(e) is almost independent of e. Nevertheless, 

by using Eq. (6) we note that the axial stiffness Kezt(e) 

shows significantly different trends versus the three 

values of t (see Fig. 11). If, by Eq. (7) we compute the 

correspondent axial natural angular frequency )(eωezt , 

we obtain the various resonance conditions of the system 

along the vertical DOF versus the correspondent values 

of the eccentricity e. Figure 12 shows )(eωezt : it can  

change from about 2 to 24 rpm. With reference to the 

component Fy applied to the polarized ring B, in Fig. 13 

the corresponding trend versus e is reported. The curves 

are relative to the three values of air gap t previously 

considered. We note that the radial force Fy is sufficiently 

independent of t and increases almost linearly versus e. 

By deriving Fy (e) with respect to e, we obtain the radial 

stiffness Keyt of the levitation system [see Eq. (8)]. Figure 

14 shows the functions Keyt(e) versus t. By observing 

these curves, the nonlinearity of Fy (e) is pointed out. By 

using Eq. (9) we obtain the corresponding radial natural 

angular frequencies )(eωeyt . These frequencies vary from 

about 64.5 to 68.7 rpm (see Fig. 15). As noted in Section 

I, the values of forces and stiffnesses relative to an angle 

α of inclination of the magnetization M lower than 90 

degrees, can be simply obtained by multiplying the 

corresponding values computed with α=90 degrees by 

2sin . For the corresponding natural angular frequency 

the multiplicative factor is equal to sin . Consequently, 

when α decreases, also the stiffnesses and natural 

frequencies become lower. 

 

 
 

Fig. 5. Magnetization induction vectors in 441 points of 

the upper surface of the upper polarized ring B (see Fig. 

1 in Part I). 

 

 
 

Fig. 6. A typical trend of the radial force Fx when e=0 

and =90 degrees versus the air gap t. 
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Table 1: Parameters used for the numerical simulations 

Module of the Uniform 

Magnetization M  
11.38A/m 

Inner radius of the magnets ri 0.4 m 

Outer radius of the magnets re 0.9 m 

Free space permeability 
0

μ  4 Wb/Am 

 90, 70, 30 degrees 

e 
0.000, 0.001, 0.002, 

…, 0.010 m 

t 

0.003, 0.004, …, 0.012, 

0.015, 0.017, 0.020, 

0.025, 0.030, 0.035, 

0.040, 0.050, 0.075, 

0.100, 0.150, 0.200, 

0.300, 0.400, 0.500 m 

h 0.1 m 

mtot 6.087×105 Kg 

Number kr of subdivision 

intervals of re-ri 
20 

Number kθ of subdivision 

intervals of 2π 
20 

Number (kr+1)×(kθ+1) of 

points where the magnetic 

induction has been computed 

441 

 

 
 
Fig. 7. Vertical levitation force Fz when e=0 versus the 

air gap t and the angle . 

 

 
 

Fig. 8. Stiffnesses Ktze versus the air gap t when e=0 

versus the air gap t and the angle . 

 
 

Fig. 9. Axial angular natural frequency tzeω  versus the 

air gap t and the angle  when the eccentricity e=0. 

 

 
 

Fig. 10. Interpolation of the force Fz relative to three air 

gap values t versus the eccentricity e, with =90 degrees. 
 

 
 

Fig. 11. Axial stiffness Kezt relative to three air gap t 

values versus the eccentricity e, with =90 degrees. 
 

 
 

Fig. 12. Axial angular natural frequency eztω  relative to 

three air gap t values versus the eccentricity e, with =90 

degrees. 
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Fig. 13. Force Fy relative to three air gap values t versus 

the eccentricity e, with =90 degrees. 

 

 
 

Fig. 14. Radial stiffness Keyt relative to three air gap t 

values versus the eccentricity e, with =90 degrees. 

 

 
 

Fig. 15. Radial angular natural frequency eytω  relative 

to three air gap t values versus the eccentricity e, with 

=90 degrees. 

 

IV. SOME CONSIDERATIONS ON THE 

RESULTS OBTAINED  
With reference to the vertical levitation force we 

note that in the domain 0.000≤ e ≤0.010 m Fz varies very 

little (see Fig. 10). Conversely, the corresponding curve 

of Fy(e) shows an almost linear variation, from 0 to about 

20000 N (see Fig. 13). The component Fx (e), in general 

is several orders of magnitude lower than Fy(e) and, 

overall, Fz(e). As previously mentioned, Fx (e) should be 

equal to zero, whatever the value of e is. The irregular 

trend of Fx(e) depends on the number of effective digits 

fixed to perform the integrations. In this respect, we note 

that all the integrations have been performed by setting a 

precision for the computation with five effective digits 

of accuracy [3]. If a greater number of effective digits is 

fixed (for example 15), the computation time becomes 

very high and, in general, significant improvements of 

the results are not obtained (only small differences affect 

the results achieved with 5 and 15 effective digits). From 

an engineering point of view, we observe that a high 

value of stiffness (axial and radial) as much as possible 

independent of the air gap and the eccentricity would be 

suitable. In the case of the passive magnetic levitation 

this condition is partially met. Moreover, the angular 

natural frequencies are lower than the stationary rotation 

speed of the hydrounit (187.5 rpm). Therefore, during 

periods of start-ups and shutdowns the system passes 

more or less quickly through its resonant frequencies. If 

this passage is not quite fast, dangerous vibrations can 

arise. With reference to the simplified model illustrated 

in Fig. 8 (a) in Part I [1], we observe that it can reflect 

reality better than the one reported in Fig. 8 (b), also in 

Part I. However, the lateral instability of the magnetic 

levitation [12] is also confirmed by observing the trend 

of the force Fy (see Fig. 13): it quickly increases versus 

the eccentricity. Finally, we observe that in spite of the 

simplifications, the results obtained and the relative 

considerations suggest which basic problems can arise if 

we consider substituting a classic hydrodynamic thrust 

bearing with passive magnetic bearings. We can note that 

also the hydrodynamic bearings have their drawbacks 

[13]. Therefore, possible preliminary studies of alternative 

solutions could be acceptable. 

 

V. CONCLUSION 
The knowledge of the natural vibration frequencies 

of a system is important to avoid an operating condition 

where the frequencies of the excitation forces are near  

or equal to the above-mentioned natural frequencies. The 

passive bearings are parts of a mechanical system and 

determine the corresponding natural frequencies versus 

the applied load and the oscillating masses. In order to 

avoid dangerous resonances or beats it is convenient to 

evaluate how these frequencies change in function of 

different operating conditions. In the case study it was 

found that a reduction of the air gap beyond certain limits 

causes a significant increase of the stiffness of the axial 

bearing. Consequently, we obtain an increase of the 

natural frequency of the system. Therefore, the larger the 

load applied the higher the aforesaid frequency. This 
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behavior is similar to that which was found in another 

study concerning the passive radial bearings [14]. With 

reference to the demanding application example, this fact 

can surely be advantageous if we were able to increase 

the natural frequencies to a speed higher than the 

stationary rotational speed of the device (187.5 rpm). 

Unfortunately, higher natural frequencies correspond  

to too small air gaps that, from an engineering point  

of view, cannot be accepted. This problem could be 

studied and, perhaps, solved, by considering additional 

permanent magnets. The position of these magnets 

should be controlled by a feedback system versus the 

instantaneous values of air gaps and natural frequencies. 

Finally, if we consider a nonlinear magnetization M  

of the ring magnets, the details of the mathematical 

model illustrated in Part I [1] enable a very fast and easy 

modification to compute the field and the forces due to 

the surface charge density )(M P . 
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